IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i11p1687-d1404441.html
   My bibliography  Save this article

A Set Covering Approach to Design Maximally Permissive Supervisors for Flexible Manufacturing Systems

Author

Listed:
  • Yongyao Li

    (Institute of Systems Engineering, Macau University of Science and Technology, Taipa, Macau 999078, China)

  • Yufeng Chen

    (Institute of Systems Engineering, Macau University of Science and Technology, Taipa, Macau 999078, China)

  • Rui Zhou

    (Institute of Systems Engineering, Macau University of Science and Technology, Taipa, Macau 999078, China
    Waytous Inc., Shenzhen 518131, China)

Abstract

The supervisory control of Petri nets aims to enforce the undesired behavior as unreachable by designing a set of control places. This work presents a set cover approach to design maximally permissive supervisors. For each first-met bad marking, an integer linear programming problem is developed to obtain a control place to prohibit it. An objective function is formulated to make the maximal number of first-met bad markings forbidden. Then, we develop a set covering approach to minimize the number of selected control places. The proposed approach can guarantee the maximal permissiveness of the obtained supervisor and provide a trade-off between structural complexity and computational cost. Several examples are considered to validate the proposed method.

Suggested Citation

  • Yongyao Li & Yufeng Chen & Rui Zhou, 2024. "A Set Covering Approach to Design Maximally Permissive Supervisors for Flexible Manufacturing Systems," Mathematics, MDPI, vol. 12(11), pages 1-20, May.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:11:p:1687-:d:1404441
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/11/1687/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/11/1687/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhenhua Yu & Xudong Duan & Xuya Cong & Xiangning Li & Li Zheng, 2023. "Detection of Actuator Enablement Attacks by Petri Nets in Supervisory Control Systems," Mathematics, MDPI, vol. 11(4), pages 1-23, February.
    2. Haoming Zhu & Gaiyun Liu & Zhenhua Yu & Zhiwu Li, 2023. "Detectability in Discrete Event Systems Using Unbounded Petri Nets," Mathematics, MDPI, vol. 11(18), pages 1-28, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dan Wang & Yukang Liu & Zhenhua Yu, 2023. "Synergistic Mechanism of Designing Information Granules with the Use of the Principle of Justifiable Granularity," Mathematics, MDPI, vol. 11(7), pages 1-19, April.
    2. Haoming Zhu & Gaiyun Liu & Zhenhua Yu & Zhiwu Li, 2023. "Detectability in Discrete Event Systems Using Unbounded Petri Nets," Mathematics, MDPI, vol. 11(18), pages 1-28, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:11:p:1687-:d:1404441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.