IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2023i1p69-d1307097.html
   My bibliography  Save this article

Low-Carbon Optimization Design of Grinding Machine Spindle Based on Improved Whale Algorithm

Author

Listed:
  • Qi Lu

    (School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Xubo Gao

    (School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Felix T. S. Chan

    (School of Business, Macau University of Science and Technology, Macau, China)

Abstract

To achieve a fundamental reduction in the carbon emissions associated with grinding machines, it is imperative to systematically explore low-carbon considerations in the design phase. The spindle is a significant contributor to carbon emissions in grinding machines, and an effective approach for reducing carbon emissions is the structural optimization of the spindle. Most of the current optimization methods aim at improving processability without considering the reduction of carbon emissions. In this context, the present study addresses the issue of carbon emissions within the spindle design phase. Initially, the determination of the spindle’s carbon emissions function and the selection of the optimization objective were undertaken. The structural factors that have a significant influence on the optimization objective were identified as optimization variables. Subsequently, the optimization objective function was established through the application of the fitting method. Finally, the proposed model was refined through the utilization of an enhanced whale algorithm. The findings indicate an 8.22% reduction in carbon emissions associated with the spindle, accompanied by marginal enhancements in both static and dynamic spindle performance. The concluding section of this paper deliberates on the impact of structural parameters on the specified objectives, thereby providing insights for the optimal design of the spindle.

Suggested Citation

  • Qi Lu & Xubo Gao & Felix T. S. Chan, 2023. "Low-Carbon Optimization Design of Grinding Machine Spindle Based on Improved Whale Algorithm," Mathematics, MDPI, vol. 12(1), pages 1-19, December.
  • Handle: RePEc:gam:jmathe:v:12:y:2023:i:1:p:69-:d:1307097
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/1/69/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/1/69/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yingzhi Zhang & Guiming Guo & Fang Yang & Yubin Zheng & Fenli Zhai, 2023. "Prediction of Tool Remaining Useful Life Based on NHPP-WPHM," Mathematics, MDPI, vol. 11(8), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhengyang Fan & Wanru Li & Kuo-Chu Chang, 2023. "A Bidirectional Long Short-Term Memory Autoencoder Transformer for Remaining Useful Life Estimation," Mathematics, MDPI, vol. 11(24), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2023:i:1:p:69-:d:1307097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.