IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2023i1p127-d1310724.html
   My bibliography  Save this article

On Another Type of Convergence for Intuitionistic Fuzzy Observables

Author

Listed:
  • Katarína Čunderlíková

    (Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, 814 73 Bratislava, Slovakia)

Abstract

The convergence theorems play an important role in the theory of probability and statistics and in its application. In recent times, we studied three types of convergence of intuitionistic fuzzy observables, i.e., convergence in distribution, convergence in measure and almost everywhere convergence. In connection with this, some limit theorems, such as the central limit theorem, the weak law of large numbers, the Fisher–Tippet–Gnedenko theorem, the strong law of large numbers and its modification, have been proved. In 1997, B. Riečan studied an almost uniform convergence on D-posets, and he showed the connection between almost everywhere convergence in the Kolmogorov probability space and almost uniform convergence in D-posets. In 1999, M. Jurečková followed on from his research, and she proved the Egorov’s theorem for observables in MV-algebra using results from D-posets. Later, in 2017, the authors R. Bartková, B. Riečan and A. Tirpáková studied an almost uniform convergence and the Egorov’s theorem for fuzzy observables in the fuzzy quantum space. As the intuitionistic fuzzy sets introduced by K. T. Atanassov are an extension of the fuzzy sets introduced by L. Zadeh, it is interesting to study an almost uniform convergence on the family of the intuitionistic fuzzy sets. The aim of this contribution is to define an almost uniform convergence for intuitionistic fuzzy observables. We show the connection between the almost everywhere convergence and almost uniform convergence of a sequence of intuitionistic fuzzy observables, and we formulate a version of Egorov’s theorem for the case of intuitionistic fuzzy observables. We use the embedding of the intuitionistic fuzzy space into the suitable MV-algebra introduced by B. Riečan. We formulate the connection between the almost uniform convergence of functions of several intuitionistic fuzzy observables and almost uniform convergence of random variables in the Kolmogorov probability space too.

Suggested Citation

  • Katarína Čunderlíková, 2023. "On Another Type of Convergence for Intuitionistic Fuzzy Observables," Mathematics, MDPI, vol. 12(1), pages 1-11, December.
  • Handle: RePEc:gam:jmathe:v:12:y:2023:i:1:p:127-:d:1310724
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/1/127/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/1/127/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2023:i:1:p:127-:d:1310724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.