IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i9p2201-d1141074.html
   My bibliography  Save this article

Convolution, Correlation, and Uncertainty Principles for the Quaternion Offset Linear Canonical Transform

Author

Listed:
  • Didar Urynbassarova

    (National Engineering Academy of the Republic of Kazakhstan, Almaty 050000, Kazakhstan)

  • Aajaz A. Teali

    (Department of Mathematics, University of Kashmir, South Campus, Anantnag 192101, India)

Abstract

Quaternion Fourier transform (QFT) has gained significant attention in recent years due to its effectiveness in analyzing multi-dimensional signals and images. This article introduces two-dimensional (2D) right-sided quaternion offset linear canonical transform (QOLCT), which is the most general form of QFT with additional free parameters. We explore the properties of 2D right-sided QOLCT, including inversion and Parseval formulas, besides its relationship with other transforms. We also examine the convolution and correlation theorems of 2D right-sided QOLCT, followed by several uncertainty principles. Additionally, we present an illustrative example of the proposed transform, demonstrating its graphical representation of a given signal and its transformed signal. Finally, we demonstrate an application of QOLCT, where it can be utilized to generalize the treatment of swept-frequency filters.

Suggested Citation

  • Didar Urynbassarova & Aajaz A. Teali, 2023. "Convolution, Correlation, and Uncertainty Principles for the Quaternion Offset Linear Canonical Transform," Mathematics, MDPI, vol. 11(9), pages 1-24, May.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2201-:d:1141074
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/9/2201/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/9/2201/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hehe Yang & Qiang Feng & Xiaoxia Wang & Didar Urynbassarova & Aajaz A. Teali, 2024. "Reduced Biquaternion Windowed Linear Canonical Transform: Properties and Applications," Mathematics, MDPI, vol. 12(5), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2201-:d:1141074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.