IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i9p1977-d1129973.html
   My bibliography  Save this article

CPPE: An Improved Phasmatodea Population Evolution Algorithm with Chaotic Maps

Author

Listed:
  • Tsu-Yang Wu

    (College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

  • Haonan Li

    (College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

  • Shu-Chuan Chu

    (College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

Abstract

The Phasmatodea Population Evolution (PPE) algorithm, inspired by the evolution of the phasmatodea population, is a recently proposed meta-heuristic algorithm that has been applied to solve problems in engineering. Chaos theory has been increasingly applied to enhance the performance and convergence of meta-heuristic algorithms. In this paper, we introduce chaotic mapping into the PPE algorithm to propose a new algorithm, the Chaotic-based Phasmatodea Population Evolution (CPPE) algorithm. The chaotic map replaces the initialization population of the original PPE algorithm to enhance performance and convergence. We evaluate the effectiveness of the CPPE algorithm by testing it on 28 benchmark functions, using 12 different chaotic maps. The results demonstrate that CPPE outperforms PPE in terms of both performance and convergence speed. In the performance analysis, we found that the CPPE algorithm with the Tent map showed improvements of 8.9647%, 10.4633%, and 14.6716%, respectively, in the Final, Mean, and Standard metrics, compared to the original PPE algorithm. In terms of convergence, the CPPE algorithm with the Singer map showed an improvement of 65.1776% in the average change rate of fitness value, compared to the original PPE algorithm. Finally, we applied our CPPE to stock prediction. The results showed that the predicted curve was relatively consistent with the real curve.

Suggested Citation

  • Tsu-Yang Wu & Haonan Li & Shu-Chuan Chu, 2023. "CPPE: An Improved Phasmatodea Population Evolution Algorithm with Chaotic Maps," Mathematics, MDPI, vol. 11(9), pages 1-21, April.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:1977-:d:1129973
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/9/1977/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/9/1977/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Assareh, E. & Behrang, M.A. & Assari, M.R. & Ghanbarzadeh, A., 2010. "Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in Iran," Energy, Elsevier, vol. 35(12), pages 5223-5229.
    2. Chen, Xiao & Cao, Benyi & Pouramini, Somayeh, 2023. "Energy cost and consumption reduction of an office building by Chaotic Satin Bowerbird Optimization Algorithm with model predictive control and artificial neural network: A case study," Energy, Elsevier, vol. 270(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jian Dong, 2023. "Preface to the Special Issue on “Recent Advances in Swarm Intelligence Algorithms and Their Applications”—Special Issue Book," Mathematics, MDPI, vol. 11(12), pages 1-4, June.
    2. Chin Soon Ku & Jiale Xiong & Yen-Lin Chen & Shing Dhee Cheah & Hoong Cheng Soong & Lip Yee Por, 2023. "Improving Stock Market Predictions: An Equity Forecasting Scanner Using Long Short-Term Memory Method with Dynamic Indicators for Malaysia Stock Market," Mathematics, MDPI, vol. 11(11), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morovat, Navid & Athienitis, Andreas K. & Candanedo, José Agustín & Nouanegue, Hervé Frank, 2024. "Heuristic model predictive control implementation to activate energy flexibility in a fully electric school building," Energy, Elsevier, vol. 296(C).
    2. Atul Anand & L Suganthi, 2018. "Hybrid GA-PSO Optimization of Artificial Neural Network for Forecasting Electricity Demand," Energies, MDPI, vol. 11(4), pages 1-15, March.
    3. Sina Paryani & Aminreza Neshat & Saman Javadi & Biswajeet Pradhan, 2020. "Comparative performance of new hybrid ANFIS models in landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1961-1988, September.
    4. Zhu, Yongbin & Shi, Yajuan & Wang, Zheng, 2014. "How much CO2 emissions will be reduced through industrial structure change if China focuses on domestic rather than international welfare?," Energy, Elsevier, vol. 72(C), pages 168-179.
    5. Penghui Qiang & Peng Wu & Tao Pan & Huaiquan Zang, 2021. "Real-Time Approximate Equivalent Consumption Minimization Strategy Based on the Single-Shaft Parallel Hybrid Powertrain," Energies, MDPI, vol. 14(23), pages 1-22, November.
    6. Ke, Ming-Tsun & Yeh, Chia-Hung & Su, Cheng-Jie, 2017. "Cloud computing platform for real-time measurement and verification of energy performance," Applied Energy, Elsevier, vol. 188(C), pages 497-507.
    7. Askarzadeh, Alireza, 2014. "Comparison of particle swarm optimization and other metaheuristics on electricity demand estimation: A case study of Iran," Energy, Elsevier, vol. 72(C), pages 484-491.
    8. Yongjie Yang & Yulong Li & Yan Cai & Hui Tang & Peng Xu, 2024. "Data-Driven Golden Jackal Optimization–Long Short-Term Memory Short-Term Energy-Consumption Prediction and Optimization System," Energies, MDPI, vol. 17(15), pages 1-20, July.
    9. Babak Mohammadi & Farshad Ahmadi & Saeid Mehdizadeh & Yiqing Guan & Quoc Bao Pham & Nguyen Thi Thuy Linh & Doan Quang Tri, 2020. "Developing Novel Robust Models to Improve the Accuracy of Daily Streamflow Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3387-3409, August.
    10. Uzlu, Ergun & Akpınar, Adem & Özturk, Hasan Tahsin & Nacar, Sinan & Kankal, Murat, 2014. "Estimates of hydroelectric generation using neural networks with the artificial bee colony algorithm for Turkey," Energy, Elsevier, vol. 69(C), pages 638-647.
    11. Lee, Chien-Chiang & Hussain, Jafar, 2023. "Energy sustainability under the COVID-19 outbreak: Electricity break-off policy to minimize electricity market crises," Energy Economics, Elsevier, vol. 125(C).
    12. Reza Mikaeil & Sina Shaffiee Haghshenas & Zoheir Sedaghati, 2019. "Geotechnical risk evaluation of tunneling projects using optimization techniques (case study: the second part of Emamzade Hashem tunnel)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1099-1113, July.
    13. Ma, Weimin & Zhu, Xiaoxi & Wang, Miaomiao, 2013. "Forecasting iron ore import and consumption of China using grey model optimized by particle swarm optimization algorithm," Resources Policy, Elsevier, vol. 38(4), pages 613-620.
    14. Yuemin Zheng & Jin Tao & Hao Sun & Qinglin Sun & Zengqiang Chen & Matthias Dehmer & Quan Zhou, 2021. "Load Frequency Active Disturbance Rejection Control for Multi-Source Power System Based on Soft Actor-Critic," Energies, MDPI, vol. 14(16), pages 1-17, August.
    15. Xiong, Suqin & Li, Yang & Li, Qiuyang & Ye, Zhishan & Pouramini, Somayeh, 2024. "Energy consumption prediction by modified fish migration optimization algorithm: City single-family homes," Applied Energy, Elsevier, vol. 353(PA).
    16. Younes, Mimoun & Khodja, Fouad & Kherfane, Riad Lakhdar, 2014. "Multi-objective economic emission dispatch solution using hybrid FFA (firefly algorithm) and considering wind power penetration," Energy, Elsevier, vol. 67(C), pages 595-606.
    17. Wang, Bo & Wang, Shuming & Zhou, Xianzhong & Watada, Junzo, 2016. "Multi-objective unit commitment with wind penetration and emission concerns under stochastic and fuzzy uncertainties," Energy, Elsevier, vol. 111(C), pages 18-31.
    18. Hamed Bagheri & Mohammadali Behrang & Ehsanolah Assareh & Mohsen Izadi & Mikhail A. Sheremet, 2019. "Free Convection of Hybrid Nanofluids in a C-Shaped Chamber under Variable Heat Flux and Magnetic Field: Simulation, Sensitivity Analysis, and Artificial Neural Networks," Energies, MDPI, vol. 12(14), pages 1-17, July.
    19. Izadyar, Nima & Ghadamian, Hossein & Ong, Hwai Chyuan & moghadam, Zeinab & Tong, Chong Wen & Shamshirband, Shahaboddin, 2015. "Appraisal of the support vector machine to forecast residential heating demand for the District Heating System based on the monthly overall natural gas consumption," Energy, Elsevier, vol. 93(P2), pages 1558-1567.
    20. Mehdi Seraj & Pejman Bahramian & Abdulkareem Alhassan & Rasool Dehghanzadeh Shahabad, 2020. "The validity of Rodrik’s conclusion on real exchange rate and economic growth: factor priority evidence from feature selection approach," Palgrave Communications, Palgrave Macmillan, vol. 6(1), pages 1-6, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:1977-:d:1129973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.