IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i8p1787-d1119073.html
   My bibliography  Save this article

Automated Differential Equation Solver Based on the Parametric Approximation Optimization

Author

Listed:
  • Alexander Hvatov

    (NSS Lab, ITMO University, Saint Petersburg 197101, Russia)

Abstract

The classical numerical methods for differential equations are a well-studied field. Nevertheless, these numerical methods are limited in their scope to certain classes of equations. Modern machine learning applications, such as equation discovery, may benefit from having the solution to the discovered equations. The solution to an arbitrary equation typically requires either an expert system that chooses the proper method for a given equation, or a method with a wide range of equation types. Machine learning methods may provide the needed versatility. This article presents a method that uses an optimization algorithm for a parameterized approximation to find a solution to a given problem. We take an agnostic approach without dividing equations by their type or boundary conditions, which allows for fewer restrictions on the algorithm. The results may not be as precise as those of an expert; however, our method enables automated solutions for a wide range of equations without the algorithm’s parameters changing. In this paper, we provide examples of the Legendre equation, Painlevé transcendents, wave equation, heat equation, and Korteweg–de Vries equation, which are solved in a unified manner without significant changes to the algorithm’s parameters.

Suggested Citation

  • Alexander Hvatov, 2023. "Automated Differential Equation Solver Based on the Parametric Approximation Optimization," Mathematics, MDPI, vol. 11(8), pages 1-23, April.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:8:p:1787-:d:1119073
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/8/1787/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/8/1787/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:8:p:1787-:d:1119073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.