IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i7p1743-d1116588.html
   My bibliography  Save this article

Traffic Accident Detection Method Using Trajectory Tracking and Influence Maps

Author

Listed:
  • Yihang Zhang

    (Department of Autonomous Things Intelligence, Dongguk University–Seoul, Seoul 04620, Republic of Korea)

  • Yunsick Sung

    (Division of AI Software Convergence, Dongguk University–Seoul, Seoul 04620, Republic of Korea)

Abstract

With the development of artificial intelligence, techniques such as machine learning, object detection, and trajectory tracking have been applied to various traffic fields to detect accidents and analyze their causes. However, detecting traffic accidents using closed-circuit television (CCTV) as an emerging subject in machine learning remains challenging because of complex traffic environments and limited vision. Traditional research has limitations in deducing the trajectories of accident-related objects and extracting the spatiotemporal relationships among objects. This paper proposes a traffic accident detection method that helps to determine whether each frame shows accidents by generating and considering object trajectories using influence maps and a convolutional neural network (CNN). The influence maps with spatiotemporal relationships were enhanced to improve the detection of traffic accidents. A CNN is utilized to extract latent representations from the influence maps produced by object trajectories. Car Accident Detection and Prediction (CADP) was utilized in the experiments to train our model, which achieved a traffic accident detection accuracy of approximately 95%. Thus, the proposed method attained remarkable results in terms of performance improvement compared to methods that only rely on CNN-based detection.

Suggested Citation

  • Yihang Zhang & Yunsick Sung, 2023. "Traffic Accident Detection Method Using Trajectory Tracking and Influence Maps," Mathematics, MDPI, vol. 11(7), pages 1-14, April.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:7:p:1743-:d:1116588
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/7/1743/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/7/1743/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lvyang Qiu & Shuyu Li & Yunsick Sung, 2021. "DBTMPE: Deep Bidirectional Transformers-Based Masked Predictive Encoder Approach for Music Genre Classification," Mathematics, MDPI, vol. 9(5), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yihang Zhang & Yunsick Sung, 2023. "Traffic Accident Detection Using Background Subtraction and CNN Encoder–Transformer Decoder in Video Frames," Mathematics, MDPI, vol. 11(13), pages 1-15, June.
    2. Zhe Jiang & Shuyu Li & Yunsick Sung, 2022. "Enhanced Evaluation Method of Musical Instrument Digital Interface Data based on Random Masking and Seq2Seq Model," Mathematics, MDPI, vol. 10(15), pages 1-17, August.
    3. Shuyu Li & Yunsick Sung, 2023. "MRBERT: Pre-Training of Melody and Rhythm for Automatic Music Generation," Mathematics, MDPI, vol. 11(4), pages 1-14, February.
    4. Yu-Huei Cheng & Che-Nan Kuo, 2022. "Machine Learning for Music Genre Classification Using Visual Mel Spectrum," Mathematics, MDPI, vol. 10(23), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:7:p:1743-:d:1116588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.