Author
Listed:
- Yue Hu
(School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
These authors contributed equally to this work.)
- Xinghao Fu
(School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
These authors contributed equally to this work.)
- Wei Zeng
(School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China)
Abstract
Fire detection and monitoring systems based on machine vision have been gradually developed in recent years. Traditional centralized deep learning model training methods transfer large amounts of video image data to the cloud, making image data privacy and confidentiality difficult. In order to protect the data privacy in the fire detection system with heterogeneous data and to enhance its efficiency, this paper proposes an improved federated learning algorithm incorporating computer vision: FedVIS, which uses a federated dropout and gradient selection algorithm to reduce communication overhead, and uses a transformer to replace a traditional neural network to improve the robustness of federated learning in the context of heterogeneous data. FedVIS can reduce the communication overhead in addition to reducing the catastrophic forgetting of previous devices, improving convergence, and producing superior global models. In this paper’s experimental results, FedVIS outperforms the common federated learning methods FedSGD, FedAVG, FedAWS, and CMFL, and improves the detection effect by reducing communication costs. As the amount of clients increases, the accuracy of other algorithmic models decreases by 2–5%, and the number of communication rounds required increases significantly; meanwhile, our method maintains a superior detection performance while requiring roughly the same number of communication rounds.
Suggested Citation
Yue Hu & Xinghao Fu & Wei Zeng, 2023.
"Distributed Fire Detection and Localization Model Using Federated Learning,"
Mathematics, MDPI, vol. 11(7), pages 1-19, March.
Handle:
RePEc:gam:jmathe:v:11:y:2023:i:7:p:1647-:d:1110507
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:7:p:1647-:d:1110507. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.