IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i5p1199-d1083990.html
   My bibliography  Save this article

Finite-Time Bounded Tracking Control for a Class of Neutral Systems

Author

Listed:
  • Jiang Wu

    (School of Mathematics and Physics, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China)

  • Yujie Xu

    (Institute of Fundamental and Interdisciplinary Sciences, Beijing Union University, No. 97 Beisihuan East Road, Chaoyang District, Beijing 100101, China
    Institute of Mathematics and Physics, Beijing Union University, No. 97 Beisihuan East Road, Chaoyang District, Beijing 100101, China)

  • Hao Xie

    (School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, China)

  • Yao Zou

    (School of Automation and Electrical Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China
    School of Intelligence Science and Technology, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China)

Abstract

In this paper, we investigate finite-time bounded (FTB) tracking control for a class of neutral systems. Firstly, the dynamic equation of the tracking error signal is given based on the original neutral system. Then, we combine it with the equations of the state vector to construct an error system, where the reference signal and the disturbance signal are fused in a new vector. Next, about the error system, we study the input–output finite-time stability problem of the closed-loop system by utilizing the Lyapunov–Krasovskii functional. We also give a finite-time stability condition in the form of linear matrix inequalities (LMIs). Furthermore, the delay-dependent and delay-independent finite-time bounded tracking controllers are designed separately for the original system. Finally, a realistic example is given to show the effectiveness of the controller design method in the paper.

Suggested Citation

  • Jiang Wu & Yujie Xu & Hao Xie & Yao Zou, 2023. "Finite-Time Bounded Tracking Control for a Class of Neutral Systems," Mathematics, MDPI, vol. 11(5), pages 1-16, February.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:5:p:1199-:d:1083990
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/5/1199/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/5/1199/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aghayan, Zahra Sadat & Alfi, Alireza & Mousavi, Yashar & Kucukdemiral, Ibrahim Beklan & Fekih, Afef, 2022. "Guaranteed cost robust output feedback control design for fractional-order uncertain neutral delay systems," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    2. Hamid Ghadiri & Hamed Khodadadi & Saleh Mobayen & Jihad H. Asad & Thaned Rojsiraphisal & Arthur Chang, 2021. "Observer-Based Robust Control Method for Switched Neutral Systems in the Presence of Interval Time-Varying Delays," Mathematics, MDPI, vol. 9(19), pages 1-20, October.
    3. Xu, Jiahong & Wang, Lijie & Liu, Yang & Sun, Jize & Pan, Yingnan, 2022. "Finite-time adaptive optimal consensus control for multi-agent systems subject to time-varying output constraints," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    4. Xiaoxing Chen & Manfeng Hu, 2017. "Finite-Time Stability and Controller Design of Continuous-Time Polynomial Fuzzy Systems," Abstract and Applied Analysis, Hindawi, vol. 2017, pages 1-12, December.
    5. Zhang, Jing & Xia, Jianwei & Sun, Wei & Zhuang, Guangming & Wang, Zhen, 2018. "Finite-time tracking control for stochastic nonlinear systems with full state constraints," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 207-220.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yu-An & Tang, Shengdao & Liu, Yufan & Kong, Qingkai & Wang, Jing, 2021. "Extended dissipative sliding mode control for nonlinear networked control systems via event-triggered mechanism with random uncertain measurement," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    2. Yao, Hejun & Gao, Fangzheng & Huang, Jiacai & Wu, Yuqiang, 2021. "Global prescribed-time stabilization via time-scale transformation for switched nonlinear systems subject to switching rational powers," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    3. Hammad Alnuman & Kuo-Hsien Hsia & Mohammadreza Askari Sepestanaki & Emad M. Ahmed & Saleh Mobayen & Ammar Armghan, 2023. "Design of Continuous Finite-Time Controller Based on Adaptive Tuning Approach for Disturbed Boost Converters," Mathematics, MDPI, vol. 11(7), pages 1-23, April.
    4. Tawfik Guesmi & Badr M. Alshammari & Yosra Welhazi & Hsan Hadj Abdallah & Ahmed Toumi, 2022. "Robust Fuzzy Control for Uncertain Nonlinear Power Systems," Mathematics, MDPI, vol. 10(9), pages 1-26, April.
    5. Zhai, Ganghui & Tian, Engang & Luo, Yuqiang & Liang, Dong, 2024. "Data-driven optimal output regulation for unknown linear discrete-time systems based on parameterization approach," Applied Mathematics and Computation, Elsevier, vol. 461(C).
    6. Fang, Liandi & Ma, Li & Ding, Shihong & Zhao, Dean, 2019. "Finite-time stabilization for a class of high-order stochastic nonlinear systems with an output constraint," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 63-79.
    7. Wang, Dongji & Chen, Fei & Meng, Bo & Hu, Xingliu & Wang, Jing, 2021. "Event-based secure H∞ load frequency control for delayed power systems subject to deception attacks," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    8. Min, Huifang & Xu, Shengyuan & Yu, Xin & Fei, Shumin & Cui, Guozeng, 2020. "Adaptive Tracking Control for Stochastic Nonlinear Systems with Full-State Constraints and Unknown Covariance Noise," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    9. Li, Huijuan & Li, Wuquan & Gu, Jianzhong, 2022. "Decentralized stabilization of large-scale stochastic nonlinear systems with time-varying powers," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    10. Yang, Yi & Chen, Fei & Lang, Jiahong & Chen, Xiangyong & Wang, Jing, 2021. "Sliding mode control of persistent dwell-time switched systems with random data dropouts," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    11. Huang, Zhengguo & Xia, Jianwei & Wang, Jing & Wei, Yunliang & Wang, Zhen & Wang, Jian, 2019. "Mixed H∞/l2−l∞ state estimation for switched genetic regulatory networks subject to packet dropouts: A persistent dwell-time switching mechanism," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 198-212.
    12. Wang, Xuelian & Xia, Jianwei & Wang, Jing & Wang, Jian & Wang, Zhen, 2019. "Passive state estimation for fuzzy jumping neural networks with fading channels based on the hidden Markov model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    13. Wenqiang Wu & Jiarui Liu & Fangyi Li & Yuanqing Zhang & Zikai Hu, 2023. "Prescribed Settling Time Adaptive Neural Network Consensus Control of Multiagent Systems with Unknown Time-Varying Input Dead-Zone," Mathematics, MDPI, vol. 11(4), pages 1-21, February.
    14. Dai, Mingcheng & Huang, Zhengguo & Xia, Jianwei & Meng, Bo & Wang, Jian & Shen, Hao, 2019. "Non-fragile extended dissipativity-based state feedback control for 2-D Markov jump delayed systems," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    15. Qi, Wenhai & Zong, Guangdeng & Cheng, Jun & Jiao, Ticao, 2019. "Robust finite-time stabilization for positive delayed semi-Markovian switching systems," Applied Mathematics and Computation, Elsevier, vol. 351(C), pages 139-152.
    16. He, Miao & Rong, Taotao & Li, Junmin & He, Chao, 2021. "Adaptive dynamic surface full state constraints control for stochastic Markov jump systems based on event-triggered strategy," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    17. Di, Ying & Zhang, Jin-Xi & Zhang, Xuefeng, 2023. "Robust stabilization of descriptor fractional-order interval systems with uncertain derivative matrices," Applied Mathematics and Computation, Elsevier, vol. 453(C).
    18. Liang, Xingyue & Xia, Jianwei & Chen, Guoliang & Zhang, Huasheng & Wang, Zhen, 2019. "Dissipativity-based sampled-data control for fuzzy Markovian jump systems," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 552-564.
    19. Wang, Zhichuang & Chen, Guoliang & Ba, Hezhen, 2019. "Stability analysis of nonlinear switched systems with sampled-data controllers," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 297-309.
    20. Liu, Yanli & Wang, Runzhi & Hao, Li-Ying, 2022. "Adaptive TD control of full-state-constrained nonlinear stochastic switched systems," Applied Mathematics and Computation, Elsevier, vol. 427(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:5:p:1199-:d:1083990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.