IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i5p1089-d1076554.html
   My bibliography  Save this article

A New Multi-Level Grid Multiple-Relaxation-Time Lattice Boltzmann Method with Spatial Interpolation

Author

Listed:
  • Zhixiang Liu

    (College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
    East China Sea Forecast Center of State Oceanic Administration, Shanghai 200136, China)

  • Shengyong Li

    (College of Information Technology, Shanghai Ocean University, Shanghai 201306, China)

  • Jun Ruan

    (College of Information Technology, Shanghai Ocean University, Shanghai 201306, China)

  • Wenbo Zhang

    (College of Information Technology, Shanghai Ocean University, Shanghai 201306, China)

  • Liping Zhou

    (School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China)

  • Dongmei Huang

    (College of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China)

  • Jingxiang Xu

    (College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306, China)

Abstract

The traditional multi-level grid multiple-relaxation-time lattice Boltzmann method (MRT-LBM) requires interpolation calculations in time and space. It is a complex and computationally intensive process. By using the buffer technique, this paper proposes a new multi-level grid MRT-LBM which requires only spatial interpolation calculations. The proposed method uses a center point format to store multi-level grid information. The grid type determination in the flow field calculation domain is done using the axis aligned bounding box (AABB) triangle overlap test. According to the calculation characteristics of MRT-LBM, the buffer grid is proposed for the first time at the interface of different levels of grids, which is used to remove the temporal interpolation calculation and simplify the spatial interpolation calculation. The corresponding multi-level grid MRT-LBM algorithm is also presented for two-dimensional and three-dimensional flow field calculation problems. For the two-dimensional problem of flow around a circular cylinder, the simulation results show that a four-level grid MRT-LBM proposed in this paper can accurately obtain the aerodynamic coefficients and Strouhal number at different Reynolds numbers, and it has about 1/9 of the total number of grids as a single-level grid MRT-LBM and is 6.76 times faster. For the three-dimensional flow calculation problem, the numerical experiments of flow past a sphere are simulated to verify the numerical precision of the presented method at Reynolds numbers = 100, 200, 250, 300, and 1000. With the streamlines and velocity contours, it is demonstrated that the multi-level grid MRT-LBM can be calculated accurately even at the interface of different size grids.

Suggested Citation

  • Zhixiang Liu & Shengyong Li & Jun Ruan & Wenbo Zhang & Liping Zhou & Dongmei Huang & Jingxiang Xu, 2023. "A New Multi-Level Grid Multiple-Relaxation-Time Lattice Boltzmann Method with Spatial Interpolation," Mathematics, MDPI, vol. 11(5), pages 1-27, February.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:5:p:1089-:d:1076554
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/5/1089/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/5/1089/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu, Dazhi & Girimaji, Sharath S., 2006. "Multi-block Lattice Boltzmann method: Extension to 3D and validation in turbulence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(1), pages 118-124.
    2. O. Filippova & D. Hänel, 1998. "Boundary-Fitting and Local Grid Refinement for Lattice-BGK Models," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 9(08), pages 1271-1279.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashorynejad, Hamid Reza & Javaherdeh, Koroush, 2019. "Evaluation of passive and active lattice Boltzmann method for PEM fuel cell modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    2. Zhixiang Liu & Jun Ruan & Wei Song & Liping Zhou & Weiqi Guo & Jingxiang Xu, 2022. "Parallel Scheme for Multi-Layer Refinement Non-Uniform Grid Lattice Boltzmann Method Based on Load Balancing," Energies, MDPI, vol. 15(21), pages 1-34, October.
    3. Mohsen Gorakifard & Clara Salueña & Ildefonso Cuesta & Ehsan Kian Far, 2021. "Analysis of Aeroacoustic Properties of the Local Radial Point Interpolation Cumulant Lattice Boltzmann Method," Energies, MDPI, vol. 14(5), pages 1-18, March.
    4. Foroughi, Sajjad & Jamshidi, Saeid & Masihi, Mohsen, 2013. "Lattice Boltzmann method on quadtree grids for simulating fluid flow through porous media: A new automatic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4772-4786.
    5. Saleh A. Bawazeer & Saleh S. Baakeem & Abdulmajeed A. Mohamad, 2022. "Integrating a Stabilized Radial Basis Function Method with Lattice Boltzmann Method," Mathematics, MDPI, vol. 10(3), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:5:p:1089-:d:1076554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.