IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i4p898-d1064105.html
   My bibliography  Save this article

IG-LSPIA: Least Squares Progressive Iterative Approximation for Isogeometric Collocation Method

Author

Listed:
  • Yini Jiang

    (School of Mathematical Sciences, Zhejiang University, Hangzhou 310058, China)

  • Hongwei Lin

    (School of Mathematical Sciences, Zhejiang University, Hangzhou 310058, China)

Abstract

The isogeometric collocation method (IGA-C), which is a promising branch of isogeometric analysis (IGA), can be considered fitting the load function with the combination of the numerical solution and its derivatives. In this study, we develop an iterative method, isogeometric least-squares progressive-iterative approximation (IG-LSPIA), to solve the fitting problem in the collocation method. IG-LSPIA starts with an initial blending function, where the control coefficients are combined with the B-spline basis functions and their derivatives. A new blending function is generated by constructing the differences for collocation points (DCP) and control coefficients (DCC), and then adding the DCC to the corresponding control coefficients. The procedure is performed iteratively until the stop criterion is reached. We prove the convergence of IG-LSPIA and show that the computation complexity in each iteration of IG-LSPIA is related only to the number of collocation points and unrelated to the number of control coefficients. Moreover, an incremental algorithm is designed; it alternates with knot refinement until the desired precision is achieved. After each knot refinement, the result of the last round of IG-LSPIA iterations is used to generate the initial blending function of the new round of iteration, thereby saving great computation. Experiments show that the proposed method is stable and efficient. In the three-dimensional case, the total computation time is saved twice compared to the traditional method.

Suggested Citation

  • Yini Jiang & Hongwei Lin, 2023. "IG-LSPIA: Least Squares Progressive Iterative Approximation for Isogeometric Collocation Method," Mathematics, MDPI, vol. 11(4), pages 1-18, February.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:898-:d:1064105
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/4/898/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/4/898/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:898-:d:1064105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.