IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i3p652-d1048761.html
   My bibliography  Save this article

Effective Incomplete Multi-View Clustering via Low-Rank Graph Tensor Completion

Author

Listed:
  • Jinshi Yu

    (School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China)

  • Qi Duan

    (Guangzhou Panyu Polytechnic, Guangzhou 510006, China)

  • Haonan Huang

    (School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

  • Shude He

    (School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China)

  • Tao Zou

    (School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China
    Pazhou Lab, Guangzhou 510330, China)

Abstract

In the past decade, multi-view clustering has received a lot of attention due to the popularity of multi-view data. However, not all samples can be observed from every view due to some unavoidable factors, resulting in the incomplete multi-view clustering (IMC) problem. Up until now, most efforts for the IMC problem have been made on the learning of consensus representations or graphs, while many missing views are ignored, making it impossible to capture the information hidden in the missing view. To overcome this drawback, we first analyzed the low-rank relationship existing inside each graph and among all graphs, and then propose a novel method for the IMC problem via low-rank graph tensor completion. Specifically, we first stack all similarity graphs into a third-order graph tensor and then exploit the low-rank relationship from each mode using the matrix nuclear norm. In this way, the connection hidden between the missing and available instances can be recovered. The consensus representation can be learned from all completed graphs via multi-view spectral clustering. To obtain the optimal multi-view clustering result, incomplete graph recovery and consensus representation learning are integrated into a joint framework for optimization. Extensive experimental results on several incomplete multi-view datasets demonstrate that the proposed method can obtain a better clustering performance in comparison with state-of-the-art incomplete multi-view clustering methods.

Suggested Citation

  • Jinshi Yu & Qi Duan & Haonan Huang & Shude He & Tao Zou, 2023. "Effective Incomplete Multi-View Clustering via Low-Rank Graph Tensor Completion," Mathematics, MDPI, vol. 11(3), pages 1-18, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:652-:d:1048761
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/3/652/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/3/652/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mantas Lukauskas & Tomas Ruzgas, 2022. "A New Clustering Method Based on the Inversion Formula," Mathematics, MDPI, vol. 10(15), pages 1-16, July.
    2. Irene Mariñas-Collado & Ana E. Sipols & M. Teresa Santos-Martín & Elisa Frutos-Bernal, 2022. "Clustering and Forecasting Urban Bus Passenger Demand with a Combination of Time Series Models," Mathematics, MDPI, vol. 10(15), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lian, Ying & Lucas, Flavien & Sörensen, Kenneth, 2024. "Prepositioning can improve the performance of a dynamic stochastic on-demand public bus system," European Journal of Operational Research, Elsevier, vol. 312(1), pages 338-356.
    2. Mantas Lukauskas & Tomas Ruzgas, 2023. "Reduced Clustering Method Based on the Inversion Formula Density Estimation," Mathematics, MDPI, vol. 11(3), pages 1-15, January.
    3. Mantas Lukauskas & Vaida Pilinkienė & Jurgita Bruneckienė & Alina Stundžienė & Andrius Grybauskas & Tomas Ruzgas, 2022. "Economic Activity Forecasting Based on the Sentiment Analysis of News," Mathematics, MDPI, vol. 10(19), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:652-:d:1048761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.