IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i3p635-d1047853.html
   My bibliography  Save this article

Statistics of Weibull Record-Breaking Events

Author

Listed:
  • Robert Shcherbakov

    (Department of Earth Sciences, Western University, London, ON N6A 5B7, Canada
    Department of Physics and Astronomy, Western University, London, ON N6A 3K7, Canada)

Abstract

The statistics of record-breaking events plays an important role in the analysis of natural physical systems. It can provide an additional insight into the mechanisms and the occurrence of extreme events. In this work, the statistical aspects of the record-breaking events drawn from the Weibull distribution are considered and analyzed in detail. It is assumed that the underlying sequences of events are independent and identically distributed ( i.i.d. ). Several statistical measures of record-breaking events are analyzed. Exact analytical expressions are derived for the statistics of records. Particularly, the distributions of record magnitudes and the corresponding average magnitudes of records in case of Weibull distributed events are derived exactly for any specific record order and time step. In addition, a convolution operation is used to derive a recursive formula for the distribution of times of the occurrence of records. The analytical results are compared with the Monte Carlo simulations and their validity is confirmed. The numerical simulations also reveal that the finite-size effects strongly affect the statistics of records and need to be considered during the analysis of numerical experiments or empirical data.

Suggested Citation

  • Robert Shcherbakov, 2023. "Statistics of Weibull Record-Breaking Events," Mathematics, MDPI, vol. 11(3), pages 1-14, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:635-:d:1047853
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/3/635/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/3/635/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:635-:d:1047853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.