IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i3p610-d1046953.html
   My bibliography  Save this article

Optimality of a Network Monitoring Agent and Validation in a Real Probe

Author

Listed:
  • Luis Zabala

    (Department of Communications Engineering, University of the Basque Country, UPV/EHU, 48013 Bilbao, Spain)

  • Josu Doncel

    (Department of Mathematics, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain)

  • Armando Ferro

    (Department of Communications Engineering, University of the Basque Country, UPV/EHU, 48013 Bilbao, Spain)

Abstract

The evolution of commodity hardware makes it possible to use this type of equipment to implement traffic monitoring systems. A preliminary empirical evaluation of a network traffic probe based on Linux indicates that the system performance has significant losses as the network rate increases. To assess this issue, we consider a model with two tandem queues and a moving server. In this system, we formulate a three-dimensional Markov Decision Process in continuous time. The goal of the proposed model is to determine the position of the server in each time slot so as to optimize the system performance which is measured in terms of throughput. We first formulate an equivalent discrete-time Markov Decision Process and we propose a numerical method to characterize the solution of our problem in a general setting. The solution we obtain in this problem has been tested for a wide range of scenarios and, in all the instances, we observe that the optimality is close to a threshold type policy. We also consider a real probe and we validate the good performance of threshold policies in real applications.

Suggested Citation

  • Luis Zabala & Josu Doncel & Armando Ferro, 2023. "Optimality of a Network Monitoring Agent and Validation in a Real Probe," Mathematics, MDPI, vol. 11(3), pages 1-23, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:610-:d:1046953
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/3/610/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/3/610/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdel-Gawad, Hamdy I. & Baleanu, Dumitru & Abdel-Gawad, Ahmed H., 2021. "Unification of the different fractional time derivatives: An application to the epidemic-antivirus dynamical system in computer networks," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis Zabala & Josu Doncel & Armando Ferro, 2023. "Modeling a Linux Packet-Capturing System with a Queueing System with Vacations," Mathematics, MDPI, vol. 11(7), pages 1-27, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alqarni, M.M. & Mahmoud, Emad E. & Abdel-Aty, Mahmoud & Abualnaja, Khadijah M. & Trikha, Pushali & Jahanzaib, Lone Seth, 2021. "Fractional chaotic cryptovirology in blockchain - analysis and control," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:610-:d:1046953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.