IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i3p568-d1043175.html
   My bibliography  Save this article

Optimization of the 24-Bit Fixed-Point Format for the Laplacian Source

Author

Listed:
  • Zoran H. Perić

    (Faculty of Electronic Engineering Niš, University of Niš, 18104 Niš, Serbia)

  • Milan R. Dinčić

    (Faculty of Electronic Engineering Niš, University of Niš, 18104 Niš, Serbia)

Abstract

The 32-bit floating-point (FP32) binary format, commonly used for data representation in computers, introduces high complexity, requiring powerful and expensive hardware for data processing and high energy consumption, hence being unsuitable for implementation on sensor nodes, edge devices, and other devices with limited hardware resources. Therefore, it is often necessary to use binary formats of lower complexity than FP32. This paper proposes the usage of the 24-bit fixed-point format that will reduce the complexity in two ways, by decreasing the number of bits and by the fact that the fixed-point format has significantly less complexity than the floating-point format. The paper optimizes the 24-bit fixed-point format and examines its performance for data with the Laplacian distribution, exploiting the analogy between fixed-point binary representation and uniform quantization. Firstly, the optimization of the 24-bit uniform quantizer is performed by deriving two new closed-form formulas for a very accurate calculation of its maximal amplitude. Then, the 24-bit fixed-point format is optimized by optimization of its key parameter and by proposing two adaptation procedures, with the aim to obtain the same performance as of the optimal uniform quantizer in a wide range of variance of input data. It is shown that the proposed 24-bit fixed-point format achieves for 18.425 dB higher performance than the floating-point format with the same number of bits while being less complex.

Suggested Citation

  • Zoran H. Perić & Milan R. Dinčić, 2023. "Optimization of the 24-Bit Fixed-Point Format for the Laplacian Source," Mathematics, MDPI, vol. 11(3), pages 1-14, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:568-:d:1043175
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/3/568/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/3/568/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:568-:d:1043175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.