IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i3p554-d1042293.html
   My bibliography  Save this article

Simultaneous Features of CC Heat Flux on Dusty Ternary Nanofluid (Graphene + Tungsten Oxide + Zirconium Oxide) through a Magnetic Field with Slippery Condition

Author

Listed:
  • Basma Souayeh

    (Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
    Laboratory of Fluid Mechanics, Physics Department, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia)

Abstract

The purpose of this work is to offer a unique theoretical ternary nanofluid (graphene/tungsten oxide/zirconium oxide) framework for better heat transfer. This model describes how to create better heat conduction than a hybrid nanofluid. Three different nanostructures with different chemical and physical bonds are suspended in water to create the ternary nanofluid (graphene/tungsten oxide/zirconium oxide). Toxic substances are broken down, the air is purified, and other devices are cooled thanks to the synergy of these nanoparticles. The properties of ternary nanofluids are discussed in this article, including their thermal conductivity, specific heat capacitance, viscosity, and density. In addition, heat transport phenomena are explained by the Cattaneo–Christov (CC) heat flow theory. In the modeling of the physical phenomena under investigation, the impacts of thermal nonlinear radiation and velocity slip are considered. By using the right transformations, flow-generating PDEs are converted into nonlinear ordinary differential equations. The parameters’ impacts on the velocity and temperature fields are analyzed in detail. The modeled problem is graphically handled in MATLAB using a numerical technique (BVP4c). Graphical representations of the important factors affecting temperature and velocity fields are illustrated through graphs. The findings disclose that the performance of ternary nanofluid phase heat transfer is improved compared to dusty phase performance. Furthermore, the magnetic parameter and the velocity slip parameter both experience a slowing-down effect of their respective velocities.

Suggested Citation

  • Basma Souayeh, 2023. "Simultaneous Features of CC Heat Flux on Dusty Ternary Nanofluid (Graphene + Tungsten Oxide + Zirconium Oxide) through a Magnetic Field with Slippery Condition," Mathematics, MDPI, vol. 11(3), pages 1-17, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:554-:d:1042293
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/3/554/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/3/554/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:554-:d:1042293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.