IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i2p472-d1037170.html
   My bibliography  Save this article

Numerical Simulation for a High-Dimensional Chaotic Lorenz System Based on Gegenbauer Wavelet Polynomials

Author

Listed:
  • Manal Alqhtani

    (Department of Mathematics, College of Arts and Sciences, Najran University, Najran 55461, Saudi Arabia)

  • Mohamed M. Khader

    (Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11566, Saudi Arabia
    Department of Mathematics, Faculty of Science, Benha University, Benha 13511, Egypt)

  • Khaled Mohammed Saad

    (Department of Mathematics, College of Arts and Sciences, Najran University, Najran 55461, Saudi Arabia)

Abstract

We provide an effective simulation to investigate the solution behavior of nine-dimensional chaos for the fractional (Caputo-sense) Lorenz system using a new approximate technique of the spectral collocation method (SCM) depending on the properties of Gegenbauer wavelet polynomials (GWPs). This technique reduces the given problem to a non-linear system of algebraic equations. We satisfy the accuracy and efficiency of the proposed method by computing the residual error function. The numerical solutions obtained are compared with the results obtained by implementing the Runge–Kutta method of order four. The results show that the given procedure is an easily applied and efficient tool to simulate this model.

Suggested Citation

  • Manal Alqhtani & Mohamed M. Khader & Khaled Mohammed Saad, 2023. "Numerical Simulation for a High-Dimensional Chaotic Lorenz System Based on Gegenbauer Wavelet Polynomials," Mathematics, MDPI, vol. 11(2), pages 1-12, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:472-:d:1037170
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/2/472/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/2/472/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Neslihan Ozdemir & Aydin Secer & Mustafa Bayram, 2019. "The Gegenbauer Wavelets-Based Computational Methods for the Coupled System of Burgers’ Equations with Time-Fractional Derivative," Mathematics, MDPI, vol. 7(6), pages 1-15, May.
    2. Xiaofei Zhou & Junmei Li & Yulan Wang & Wei Zhang, 2019. "Numerical Simulation of a Class of Hyperchaotic System Using Barycentric Lagrange Interpolation Collocation Method," Complexity, Hindawi, vol. 2019, pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du Mingjing & Yulan Wang, 2019. "Some Novel Complex Dynamic Behaviors of a Class of Four-Dimensional Chaotic or Hyperchaotic Systems Based on a Meshless Collocation Method," Complexity, Hindawi, vol. 2019, pages 1-15, October.
    2. Shahni, Julee & Singh, Randhir, 2022. "Numerical simulation of Emden–Fowler integral equation with Green’s function type kernel by Gegenbauer-wavelet, Taylor-wavelet and Laguerre-wavelet collocation methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 430-444.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:472-:d:1037170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.