IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i23p4829-d1291302.html
   My bibliography  Save this article

Description and Analysis of Data Security Based on Differential Privacy in Enterprise Power Systems

Author

Listed:
  • Zhaofeng Zhong

    (Hitachi Building Technology (Guangzhou) Co., Ltd., Guangzhou 510610, China
    These authors contributed equally to this work.)

  • Ge Zhang

    (The Institute of Systems Engineering, Macau University of Science and Technology, Macau 999078, China
    These authors contributed equally to this work.)

  • Li Yin

    (The Institute of Systems Engineering, Macau University of Science and Technology, Macau 999078, China)

  • Yufeng Chen

    (The Institute of Systems Engineering, Macau University of Science and Technology, Macau 999078, China)

Abstract

The pursuit of environmental sustainability, energy conservation, and emissions reduction has become a global focal point. Electricity is the primary source of energy in our daily lives. Through the analysis of smart power systems, we can efficiently and sustainably harness electrical energy. However, electric power system data inherently contain a wealth of sensitive user information. Therefore, our primary concern is protecting these sensitive user data while performing precise and effective analysis. To address this issue, we have innovatively proposed three granular information models based on differential privacy. In consideration of the characteristics of enterprise electricity consumption data and the imperative need for privacy protection, we implement a reasonable modeling process through data processing, information granulation expression, and the optimization analysis of information granularity. Our datasets encompass enterprise electricity consumption data and related attributes from Hitachi Building Technology (Guangzhou) Co., Ltd’s cloud computing center. Simultaneously, we have conducted experiments using publicly available datasets to underscore the model’s versatility. Our experimental results affirm that granular computation can improve the utility of differential privacy in safeguarding data privacy.

Suggested Citation

  • Zhaofeng Zhong & Ge Zhang & Li Yin & Yufeng Chen, 2023. "Description and Analysis of Data Security Based on Differential Privacy in Enterprise Power Systems," Mathematics, MDPI, vol. 11(23), pages 1-20, November.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:23:p:4829-:d:1291302
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/23/4829/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/23/4829/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pedrycz, Witold, 2014. "Allocation of information granularity in optimization and decision-making models: Towards building the foundations of Granular Computing," European Journal of Operational Research, Elsevier, vol. 232(1), pages 137-145.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouyang, Yao & Pedrycz, Witold, 2016. "A new model for intuitionistic fuzzy multi-attributes decision making," European Journal of Operational Research, Elsevier, vol. 249(2), pages 677-682.
    2. Dan Wang & Yukang Liu & Zhenhua Yu, 2023. "Synergistic Mechanism of Designing Information Granules with the Use of the Principle of Justifiable Granularity," Mathematics, MDPI, vol. 11(7), pages 1-19, April.
    3. Dias, Sónia & Brito, Paula, 2017. "Off the beaten track: A new linear model for interval data," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1118-1130.
    4. Der-Chiang Li & Wu-Kuo Lin & Liang-Sian Lin & Chien-Chih Chen & Wen-Ting Huang, 2017. "The attribute-trend-similarity method to improve learning performance for small datasets," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 1898-1913, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:23:p:4829-:d:1291302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.