IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i23p4774-d1288117.html
   My bibliography  Save this article

Research on Time-Varying Meshing Stiffness of Marine Beveloid Gear System

Author

Listed:
  • Jianmin Wen

    (School of Ocean Engineering, Harbin Institute of Technology, Weihai 264209, China)

  • Haoyu Yao

    (School of Ocean Engineering, Harbin Institute of Technology, Weihai 264209, China)

  • Qian Yan

    (School of Ocean Engineering, Harbin Institute of Technology, Weihai 264209, China)

  • Bindi You

    (School of Ocean Engineering, Harbin Institute of Technology, Weihai 264209, China)

Abstract

Beveloid gears have the advantages of compensating for axial error, providing smooth transmission, and eliminating turning error. Therefore, they are widely used in applications that require high transmission accuracy and stability. However, research on calculating the time-varying meshing stiffness of beveloid gears is still limited, and there is an urgent need to propose a method that can calculate the meshing stiffness of beveloid gears quickly and accurately. We first established the tooth profile expressions, assuming a pair of beveloid gears meshing with the same rack, and the contact line equations of parallel axis beveloid gear pairs were derived. Next, we analyzed the contact process of beveloid gears. We propose an analytical algorithm based on the slicing method to calculate the meshing stiffness of helical gears, straight beveloid gears, and helical beveloid gears. Then, the influence of different parameters on the meshing stiffness of helical beveloid gears was analyzed by changing the respective parameters. Finally, the finite element method (FEM) was used to verify the correctness of the analytical results, and then the errors were analyzed. The study demonstrates that the results obtained from the analytical algorithm we proposed have the same magnitude as those obtained by the FEM for the time-varying meshing stiffness calculation of beveloid gears.

Suggested Citation

  • Jianmin Wen & Haoyu Yao & Qian Yan & Bindi You, 2023. "Research on Time-Varying Meshing Stiffness of Marine Beveloid Gear System," Mathematics, MDPI, vol. 11(23), pages 1-26, November.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:23:p:4774-:d:1288117
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/23/4774/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/23/4774/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gongbo Long & Yingjie Liu & Wanrong Xu & Peng Zhou & Jiaqi Zhou & Guanshui Xu & Boqi Xiao, 2022. "Analysis of Crack Problems in Multilayered Elastic Medium by a Consecutive Stiffness Method," Mathematics, MDPI, vol. 10(23), pages 1-16, November.
    2. Hancheng Mao & Yongguo Sun & Tiantian Xu & Guangbin Yu, 2021. "Numerical Calculation Method of Meshing Stiffness for the Beveloid Gear considering the Effect of Surface Topography," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aušra Gadeikytė & Aušra Abraitienė & Rimantas Barauskas, 2023. "Application of Combined Micro- and Macro-Scale Models to Investigate Heat and Mass Transfer through Textile Structures with Additional Ventilation," Mathematics, MDPI, vol. 11(11), pages 1-20, May.
    2. Kristina Kaulakytė & Nikolajus Kozulinas & Grigory Panasenko & Konstantinas Pileckas & Vytenis Šumskas, 2023. "Poiseuille-Type Approximations for Axisymmetric Flow in a Thin Tube with Thin Stiff Elastic Wall," Mathematics, MDPI, vol. 11(9), pages 1-18, April.
    3. Xianhui Mao & Ankui Hu & Rui Zhao & Fei Wang & Mengkun Wu, 2023. "Evaluation and Application of Surrounding Rock Stability Based on an Improved Fuzzy Comprehensive Evaluation Method," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
    4. Amir A. Gubaidullin & Anna V. Pyatkova, 2023. "The Effects of Heat Transfer through the Ends of a Cylindrical Cavity on Acoustic Streaming and Gas Temperature," Mathematics, MDPI, vol. 11(8), pages 1-14, April.
    5. Tong Wang & Yang Liu & Qiyuan Li & Peng Du & Xiaogong Zheng & Qingfei Gao, 2023. "State-of-the-Art Review of the Resilience of Urban Bridge Networks," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    6. Lei Lan & Jiaqi Zhou & Wanrong Xu & Gongbo Long & Boqi Xiao & Guanshui Xu, 2023. "A Boundary-Element Analysis of Crack Problems in Multilayered Elastic Media: A Review," Mathematics, MDPI, vol. 11(19), pages 1-24, September.
    7. Ioan Száva & Sorin Vlase & Ildikó-Renáta Száva & Gábor Turzó & Violeta Mihaela Munteanu & Teofil Gălățanu & Zsolt Asztalos & Botond-Pál Gálfi, 2023. "Modern Dimensional Analysis-Based Heat Transfer Analysis: Normalized Heat Transfer Curves," Mathematics, MDPI, vol. 11(3), pages 1-33, February.
    8. Abdullah Alsoboh & Ala Amourah & Maslina Darus & Rami Issa Al Sharefeen, 2023. "Applications of Neutrosophic q -Poisson distribution Series for Subclass of Analytic Functions and Bi-Univalent Functions," Mathematics, MDPI, vol. 11(4), pages 1-10, February.
    9. Jingwei Yao & Hong Zhang, 2023. "Comparing Darcy’s Law and the Brinkman Equation for Numerical Simulations of Saltwater Intrusion," Sustainability, MDPI, vol. 15(18), pages 1-16, September.
    10. Muhammad Haziq Iqmal Mohd Nordin & Khairum Bin Hamzah & Najiyah Safwa Khashi’ie & Iskandar Waini & Nik Mohd Asri Nik Long & Saadatul Fitri, 2023. "Formulation for Multiple Cracks Problem in Thermoelectric-Bonded Materials Using Hypersingular Integral Equations," Mathematics, MDPI, vol. 11(14), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:23:p:4774-:d:1288117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.