IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i22p4706-d1284012.html
   My bibliography  Save this article

Analysis of Fluctuating Antenna Beamwidth in UAV-Assisted Cellular Networks

Author

Listed:
  • Mohammad Arif

    (Department of Computer Engineering, Gachon University, Seongnam-si 13120, Republic of Korea)

  • Wooseong Kim

    (Department of Computer Engineering, Gachon University, Seongnam-si 13120, Republic of Korea)

Abstract

This paper investigates a cellular network assisted by unmanned aerial vehicles (UAVs) in the presence of a fluctuating 3-dimensional (3D) antenna beamwidth. The primary objective is to perform an analysis of typical user equipment (T-UE) performance with a specific focus on coverage probability and spectral efficiency (SE) in the presence of fluctuations of 3D antenna beamwidth. Within this analytical framework, the macro base stations (MBSs) are meticulously characterized through the application of an independent 2D homogeneous Poisson point process (PPP), while the low-altitude platforms (LAPs) are described using an independent 3D PPP. The study entails the derivation of association probabilities, determining the likelihood of the T-UE associating with MBSs, line-of-sight LAPs, and non-line-of-sight LAPs. Through rigorous mathematical analysis, the paper formulates precise analytical expressions that encapsulate the association and coverage probabilities, taking into account the inherent variability in the UAV antenna beamwidth. This research focuses on a thorough performance evaluation of the T-UE across diverse network configurations, encompassing LAP density, the transmission power of LAPs, and the critical signal-to-interference ratio threshold. The outcomes of this study distinctly underscore the substantial disruptive impact resulting from fluctuating beamwidth on the performance of the T-UE within the UAV-assisted cellular network. Additionally, this performance is further impacted by larger densities and transmission power of the LAP. Hence, it is imperative to take into account the influence of these fluctuations on network association, coverage, and SE whenever contemplating a UAV-assisted cellular network.

Suggested Citation

  • Mohammad Arif & Wooseong Kim, 2023. "Analysis of Fluctuating Antenna Beamwidth in UAV-Assisted Cellular Networks," Mathematics, MDPI, vol. 11(22), pages 1-24, November.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:22:p:4706-:d:1284012
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/22/4706/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/22/4706/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tran Van Tung & To Truong An & Byung Moo Lee, 2022. "Joint Resource and Trajectory Optimization for Energy Efficiency Maximization in UAV-Based Networks," Mathematics, MDPI, vol. 10(20), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Zhang & Yiyan Cao, 2022. "Memetic Algorithm with Isomorphic Transcoding for UAV Deployment Optimization in Energy-Efficient AIoT Data Collection," Mathematics, MDPI, vol. 10(24), pages 1-18, December.
    2. Qijie Qiu & Lingjie Li & Zhijiao Xiao & Yuhong Feng & Qiuzhen Lin & Zhong Ming, 2024. "Joint UAV Deployment and Task Offloading in Large-Scale UAV-Assisted MEC: A Multiobjective Evolutionary Algorithm," Mathematics, MDPI, vol. 12(13), pages 1-18, June.
    3. Jin Li & Wenyang Guan & Zuoyin Tang, 2023. "A Resource Allocation Scheme for Packet Delay Minimization in Multi-Tier Cellular-Based IoT Networks," Mathematics, MDPI, vol. 11(21), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:22:p:4706-:d:1284012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.