Author
Listed:
- Pavel Lyakhov
(Department of Mathematical Modelling, North-Caucasus Federal University, 355009 Stavropol, Russia)
- Nataliya Semyonova
(Department of Mathematical Modelling, North-Caucasus Federal University, 355009 Stavropol, Russia)
- Nikolay Nagornov
(Department of Mathematical Modelling, North-Caucasus Federal University, 355009 Stavropol, Russia)
- Maxim Bergerman
(Department of Mathematical Modelling, North-Caucasus Federal University, 355009 Stavropol, Russia)
- Albina Abdulsalyamova
(Department of Mathematical Modelling, North-Caucasus Federal University, 355009 Stavropol, Russia)
Abstract
Wavelets are actively used to solve a wide range of image processing problems in various fields of science and technology. Modern image processing systems cannot keep up with the rapid growth in digital visual information. Various approaches are used to reduce the computational complexity and increase computational speeds. The Winograd method (WM) is one of the most promising. However, this method is used to obtain sequential values. Its use for wavelet image processing requires expanding the calculation methodology to cases of downsampling. This paper proposes a new approach to reduce the computational complexity of wavelet image processing based on the WM with decimation. Calculations have been carried out and formulas have been derived that implement digital filtering using the WM with downsampling. The derived formulas can be used for 1D filtering with an arbitrary downsampling stride. Hardware modeling of wavelet image filtering on an FPGA showed that the WM reduces the computational time by up to 66%, with increases in the hardware costs and power consumption of 95% and 344%, respectively, compared to the direct method. A promising direction for further research is the implementation of the developed approach on ASIC and the use of modular computing for more efficient parallelization of calculations and an even greater increase in the device speed.
Suggested Citation
Pavel Lyakhov & Nataliya Semyonova & Nikolay Nagornov & Maxim Bergerman & Albina Abdulsalyamova, 2023.
"High-Speed Wavelet Image Processing Using the Winograd Method with Downsampling,"
Mathematics, MDPI, vol. 11(22), pages 1-10, November.
Handle:
RePEc:gam:jmathe:v:11:y:2023:i:22:p:4644-:d:1279952
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:22:p:4644-:d:1279952. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.