Author
Listed:
- Shuaian Wang
(Faculty of Business, The Hong Kong Polytechnic University, Hong Kong)
- Yuan Liu
(School of Economics and Management, Wuhan University, Wuhan 430079, China)
- Haoqing Wang
(Faculty of Business, The Hong Kong Polytechnic University, Hong Kong)
- Yuquan Du
(School of Business, La Trobe University, Melbourne 3086, Australia)
Abstract
In recent years, the maritime industry’s carbon emissions have garnered increasing attention, leading to the proposal of various policy measures aimed at mitigating emissions and fostering a green and sustainable maritime sector. Among these measures, the book and claim mechanism, which allows shippers to access low or zero-emission bunkering by purchasing such fuels without physically participating in the refueling process, has emerged as a crucial catalyst for fuel conversion within the maritime industry. While book and claim has gained widespread recognition and facilitated the sale of clean fuels by some bunker suppliers, there has been limited research focused on evaluating its practical efficacy. Thus, we construct two distinct Mixed-Integer Linear Programming (MILP) models—one with the inclusion of the book and claim mechanism and one without—and conduct an analytical comparison of optimal decisions made by bunker suppliers and shippers under different model scenarios. Through numerical experiments, we have uncovered a noteworthy insight: with book and claim, bunker suppliers may set higher prices to maximize total profits due to various price sensitivities among shippers towards clean fuels, thus promoting low-price-sensitive shippers to purchase clean fuels while making it challenging for high-price-sensitive shippers to do so. Consequently, when compared to a scenario without book and claim, the total quantity of clean fuels purchased by shippers in the presence of book and claim may decrease, giving rise to a paradox where the implementation of book and claim inadvertently increases societal carbon emissions. This underscores the imperative for policymakers to conduct comprehensive market research, understand different shippers’ price sensitivities towards clean fuels, and make scientifically sound decisions when considering the implementation of the book and claim mechanism.
Suggested Citation
Shuaian Wang & Yuan Liu & Haoqing Wang & Yuquan Du, 2023.
"Paradox of Book and Claim for Carbon Emission Reduction in Maritime Operations Management: Mathematical Models and Numerical Experiments,"
Mathematics, MDPI, vol. 11(21), pages 1-22, October.
Handle:
RePEc:gam:jmathe:v:11:y:2023:i:21:p:4410-:d:1266467
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:21:p:4410-:d:1266467. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.