IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i20p4379-d1264537.html
   My bibliography  Save this article

Stochastic Time Complexity Surfaces of Computing Node

Author

Listed:
  • Andrey Borisov

    (Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences, 44/2 Vavilova Str., 119333 Moscow, Russia)

  • Alexey Ivanov

    (Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences, 44/2 Vavilova Str., 119333 Moscow, Russia)

Abstract

The paper is devoted to the formal description of the running time of the user task on some virtual nodes in the computing network. Based on the probability theory framework, this time represents a random value with a finite mean and variance. For any class of user task, these moments are the functions of the node resources, task numerical characteristics, and the parameters of the current node state. These functions of the vector arguments can be treated as some surfaces in the multidimensional Euclidean spaces, so the proposed models are called the stochastic time complexity surfaces. The paper also presents a class of functions suitable for the description of both the mean and variance. They contain unknown parameters which should be estimated. The article includes the statement of the parameter identification problem given the statistical results of the node stress testing, recommendations concerning the test planning, and preprocessing of the raw experiment data. To illustrate the performance of the proposed model, the authors design it for an actual database application—the prototype of the passengers’ personal data anonymization system. Its application functions are classified into two user task classes: the data anonymization procedures and fulfillment of the statistical queries. The authors identify the stochastic time complexity surfaces for both task types. The additional testing experiments confirm the high performance of the suggested model and its applicability to the solution of the practical providers’ problems.

Suggested Citation

  • Andrey Borisov & Alexey Ivanov, 2023. "Stochastic Time Complexity Surfaces of Computing Node," Mathematics, MDPI, vol. 11(20), pages 1-26, October.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:20:p:4379-:d:1264537
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/20/4379/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/20/4379/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrey Borisov & Andrey Gorshenin, 2022. "Identification of Continuous-Discrete Hidden Markov Models with Multiplicative Observation Noise," Mathematics, MDPI, vol. 10(17), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:20:p:4379-:d:1264537. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.