IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i20p4348-d1263244.html
   My bibliography  Save this article

Influence of Internal Erosion on Rainfall-Induced Instability of Layered Deposited-Soil Slopes

Author

Listed:
  • Xiaoqin Lei

    (Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
    University of Chinese Academy of Sciences, Beijing 101408, China)

  • Weiyu Zhang

    (Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
    University of Chinese Academy of Sciences, Beijing 101408, China)

  • Xiaoqing Chen

    (Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
    University of Chinese Academy of Sciences, Beijing 101408, China)

  • Liu Ming

    (Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
    University of Chinese Academy of Sciences, Beijing 101408, China)

Abstract

Layered deposited-soil slopes are widely distributed in mountainous terrain. The rainfall-induced instability of layered deposited-soil slopes is not only controlled by the unsaturated infiltration process but also by the seepage-induced internal-erosion process within the deposited soils. In this paper, the main physical processes within two-layer deposited-soil slopes under rainfall infiltration are summarized, and a coupled seepage–erosion finite element model is established to analyze the interactions between the rainfall infiltration process and the internal-erosion process within layered deposited-soil slopes. This finite element model was validated by simulating the coupled seepage–erosion process in a one-dimensional layered soil column. Then, serials of two-dimensional coupled seepage–erosion simulations were conducted to investigate the rainfall-induced seepage–erosion patterns, as well as their impact on the stability evolution of the layered deposited slopes. It was shown that the rainfall-induced seepage–erosion accelerate the water infiltration into the slope and facilitate the generation of subsurface stormflow near the layer interface, which will weaken the soils around the layer interface and accelerate the slope failure process inevitably. Special attention should be paid to the rainfall-induced seepage–erosion effect when evaluating the stability of layered deposited-soil slopes.

Suggested Citation

  • Xiaoqin Lei & Weiyu Zhang & Xiaoqing Chen & Liu Ming, 2023. "Influence of Internal Erosion on Rainfall-Induced Instability of Layered Deposited-Soil Slopes," Mathematics, MDPI, vol. 11(20), pages 1-16, October.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:20:p:4348-:d:1263244
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/20/4348/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/20/4348/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Agus Muntohar & Hung-Jiun Liao, 2010. "Rainfall infiltration: infinite slope model for landslides triggering by rainstorm," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(3), pages 967-984, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrzej Gruchot & Tymoteusz Zydroń & Andrzej Wałęga & Jana Pařílková & Jacek Stanisz, 2022. "Influence of Rainfall Events and Surface Inclination on Overland and Subsurface Runoff Formation on Low-Permeable Soil," Sustainability, MDPI, vol. 14(9), pages 1-27, April.
    2. Tanmoy Das & Vansittee Dilli Rao & Deepankar Choudhury, 2022. "Numerical investigation of the stability of landslide-affected slopes in Kerala, India, under extreme rainfall event," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 751-785, October.
    3. Wenchao Huangfu & Weicheng Wu & Xiaoting Zhou & Ziyu Lin & Guiliang Zhang & Renxiang Chen & Yong Song & Tao Lang & Yaozu Qin & Penghui Ou & Yang Zhang & Lifeng Xie & Xiaolan Huang & Xiao Fu & Jie Li &, 2021. "Landslide Geo-Hazard Risk Mapping Using Logistic Regression Modeling in Guixi, Jiangxi, China," Sustainability, MDPI, vol. 13(9), pages 1-19, April.
    4. Kyungjin An & Suyeon Kim & Taebyeong Chae & Daeryong Park, 2018. "Developing an Accessible Landslide Susceptibility Model Using Open-Source Resources," Sustainability, MDPI, vol. 10(2), pages 1-13, January.
    5. Iuliana Armaş & Florin Vartolomei & Florica Stroia & Livioara Braşoveanu, 2014. "Landslide susceptibility deterministic approach using geographic information systems: application to Breaza town, Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 995-1017, January.
    6. Ravindra Kale & Bhabagrahi Sahoo, 2011. "Green-Ampt Infiltration Models for Varied Field Conditions: A Revisit," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3505-3536, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:20:p:4348-:d:1263244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.