Author
Listed:
- Peng Qin
(Key Laboratory of Aerospace Information Security and Trusted Computing, School of Cyber Science and Engineering, Ministry of Education, Wuhan University, Wuhan 430072, China)
- Lina Wang
(Key Laboratory of Aerospace Information Security and Trusted Computing, School of Cyber Science and Engineering, Ministry of Education, Wuhan University, Wuhan 430072, China)
Abstract
The rapid development of electric vehicles provides users with convenience of life. When users enjoy the V2G charging service, privacy leakage of their charging location is a crucial security issue. Existing privacy-preserving algorithms for EV access to charging locations suffer from the problem of nondefendable background knowledge attacks and privacy attacks by untrustworthy third parties. We propose a personalized location privacy protection scheme (PPVC) based on differential privacy to meet users’ personalized EV charging requirements while protecting their privacy. First, by constructing a decision matrix, PPVC describes recommended routes’ utility and privacy effects. Then, a utility model is constructed based on the multiattribute theory. The user’s privacy preferences are integrated into the model to provide the route with the best utility. Finally, considering the privacy preference needs of users, the Euclidean distance share is used to assign appropriate privacy budgets to users and determine the generation range of false locations to generate the service request location with the highest utility. The experimental results show that the proposed personalized location privacy protection scheme can meet the service demands of users while reasonably protecting their privacy to provide higher service quality. Compared with existing solutions, PPVC improves the charging efficiency by up to 25%, and 8% at the same privacy protection level.
Suggested Citation
Peng Qin & Lina Wang, 2023.
"PPVC: Towards a Personalized Local Differential Privacy-Preserving Scheme for V2G Charging Networks,"
Mathematics, MDPI, vol. 11(20), pages 1-19, October.
Handle:
RePEc:gam:jmathe:v:11:y:2023:i:20:p:4257-:d:1258108
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:20:p:4257-:d:1258108. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.