IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i19p4198-d1255544.html
   My bibliography  Save this article

Asymptotic Sample Size for Common Test of Relative Risk Ratios in Stratified Bilateral Data

Author

Listed:
  • Keyi Mou

    (College of Mathematics and System Sciences, Xinjiang University, Urumqi 830000, China)

  • Zhiming Li

    (College of Mathematics and System Sciences, Xinjiang University, Urumqi 830000, China)

  • Changxing Ma

    (Department of Biostatistics, University at Buffalo, Buffalo, NY 14214, USA)

Abstract

In medical clinical studies, various tests usually relate to the sample size. This paper proposes several methods to calculate sample sizes for a common test of relative risk ratios in stratified bilateral data. Under the prespecified significant level and power, we derive some explicit formulae and an algorithm of the sample size. The sample sizes of the stratified intra-class model are obtained from the likelihood ratio, score, and Wald-type tests. Under pooled data, we calculate sample size based on the Wald-type test and its log-transformation form. Numerical simulations show that the proposed sample sizes have empirical power close to the prespecified value for given significance levels. The sample sizes from the iterative method are more stable and effective.

Suggested Citation

  • Keyi Mou & Zhiming Li & Changxing Ma, 2023. "Asymptotic Sample Size for Common Test of Relative Risk Ratios in Stratified Bilateral Data," Mathematics, MDPI, vol. 11(19), pages 1-17, October.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:19:p:4198-:d:1255544
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/19/4198/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/19/4198/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tang, Nian-Sheng & Tang, Man-Lai & Qiu, Shi-Fang, 2008. "Testing the equality of proportions for correlated otolaryngologic data," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3719-3729, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eleftheraki, Anastasia G. & Kateri, Maria & Ntzoufras, Ioannis, 2009. "Bayesian analysis of two dependent 22 contingency tables," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2724-2732, May.
    2. Guogen Shan & Changxing Ma, 2014. "Efficient tests for one sample correlated binary data with applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 175-188, June.
    3. Huipei Wang & Chang-Xing Ma, 2024. "Homogeneity Test of Ratios of Two Proportions in Stratified Bilateral and Unilateral Data," Mathematics, MDPI, vol. 12(17), pages 1-16, August.
    4. Xueqing Zhang & Changxing Ma, 2023. "Testing the Homogeneity of Differences between Two Proportions for Stratified Bilateral and Unilateral Data across Strata," Mathematics, MDPI, vol. 11(19), pages 1-17, October.
    5. Shuyi Liang & Kai-Tai Fang & Xin-Wei Huang & Yijing Xin & Chang-Xing Ma, 2024. "Homogeneity tests and interval estimations of risk differences for stratified bilateral and unilateral correlated data," Statistical Papers, Springer, vol. 65(6), pages 3499-3543, August.
    6. Guogen Shan, 2020. "Exact confidence limits for proportion difference in clinical trials with bilateral outcome," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(3), pages 515-525, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:19:p:4198-:d:1255544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.