IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i19p4076-d1247954.html
   My bibliography  Save this article

An Extended Zeta Function with Applications in Model Building and Bayesian Analysis

Author

Listed:
  • Arak M. Mathai

    (Emeritus Professor, Department of Mathematics and Statistics, McGill University, Montreal, QC H3A2K6, Canada)

Abstract

In certain problems in model building and Bayesian analysis, the results end up in forms connected with generalized zeta functions. This necessitates the introduction of an extended form of the generalized zeta function. Such an extended form of the zeta function is introduced in this paper. In model building situations and in various types of applications in physical, biological and social sciences and engineering, a basic model taken is the Gaussian model in the univariate, multivariate and matrix-variate situations. A real scalar variable logistic model behaves like a Gaussian model but with a thicker tail. Hence, for many of industrial applications, a logistic model is preferred to a Gaussian model. When we study the properties of a logistic model in the multivariate and matrix-variate cases, in the real and complex domains, invariably the problem ends up in the extended zeta function defined in this paper. Several such extended logistic models are considered. It is also found that certain Bayesian considerations also end up in the extended zeta function introduced in this paper. Several such Bayesian models in the multivariate and matrix-variate cases in the real and complex domains are discussed. It is stated in a recent paper that “Quantum Mechanics is just the Bayesian theory generalized to the complex Hilbert space”. Hence, the models developed in this paper are expected to have applications in quantum mechanics, communication theory, physics, statistics and related areas.

Suggested Citation

  • Arak M. Mathai, 2023. "An Extended Zeta Function with Applications in Model Building and Bayesian Analysis," Mathematics, MDPI, vol. 11(19), pages 1-19, September.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:19:p:4076-:d:1247954
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/19/4076/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/19/4076/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:19:p:4076-:d:1247954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.