IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i18p4006-d1244394.html
   My bibliography  Save this article

Gilbreath Equation, Gilbreath Polynomials, and Upper and Lower Bounds for Gilbreath Conjecture

Author

Listed:
  • Riccardo Gatti

    (National Laboratory of Molecular Biology and Stem Cell Engineering, Istituto Nazionale di Biostrutture e Biosistemi (INBB) c/o Eldor Lab, Via di Corticella 183, 40128 Bologna, Italy)

Abstract

Let S = s 1 , … , s n be a finite sequence of integers. Then, S is a Gilbreath sequence of length n , S ∈ G n , iff s 1 is even or odd and s 2 , … , s n are, respectively, odd or even and min K s 1 , … , s m ≤ s m + 1 ≤ max K s 1 , … , s m , ∀ m ∈ 1 , n . This, applied to the order sequence of prime number P , defines Gilbreath polynomials and two integer sequences, A347924 and A347925, which are used to prove that Gilbreath conjecture G C is implied by p n − 2 n − 1 ⩽ P n − 1 1 , where P n − 1 1 is the n − 1 -th Gilbreath polynomial at 1.

Suggested Citation

  • Riccardo Gatti, 2023. "Gilbreath Equation, Gilbreath Polynomials, and Upper and Lower Bounds for Gilbreath Conjecture," Mathematics, MDPI, vol. 11(18), pages 1-7, September.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:4006-:d:1244394
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/18/4006/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/18/4006/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:4006-:d:1244394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.