IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i18p3985-d1243418.html
   My bibliography  Save this article

A Novel Vieta–Fibonacci Projection Method for Solving a System of Fractional Integrodifferential Equations

Author

Listed:
  • Abdelkader Moumen

    (Department of Mathematics, Faculty of Sciences, University of Ha’il, Ha’il 55425, Saudi Arabia
    These authors contributed equally to this work.)

  • Abdelaziz Mennouni

    (Department of Mathematics, LTM, University of Batna 2, Mostefa Ben Boulaïd, Fesdis, Batna 05078, Algeria
    These authors contributed equally to this work.)

  • Mohamed Bouye

    (Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
    These authors contributed equally to this work.)

Abstract

In this paper, a new approach for numerically solving the system of fractional integrodifferential equations is devised. To approximate the issue, we employ Vieta–Fibonacci polynomials as basis functions and derive the projection method for Caputo fractional order for the first time. An efficient transformation reduces the problem to a system of two independent equations. Solving two algebraic equations yields an approximate solution to the problem. The proposed method’s efficiency and accuracy are validated. We demonstrate the existence of the solution to the approximate problem and conduct an error analysis. Numerical tests reinforce the interpretations of the theory.

Suggested Citation

  • Abdelkader Moumen & Abdelaziz Mennouni & Mohamed Bouye, 2023. "A Novel Vieta–Fibonacci Projection Method for Solving a System of Fractional Integrodifferential Equations," Mathematics, MDPI, vol. 11(18), pages 1-14, September.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:3985-:d:1243418
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/18/3985/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/18/3985/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmad, Bashir & K. Ntouyas, Sotiris, 2015. "Existence results for a coupled system of Caputo type sequential fractional differential equations with nonlocal integral boundary conditions," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 615-622.
    2. Saeed Althubiti & Abdelaziz Mennouni, 2022. "A Novel Projection Method for Cauchy-Type Systems of Singular Integro-Differential Equations," Mathematics, MDPI, vol. 10(15), pages 1-11, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Almalahi, Mohammed A. & Panchal, Satish K. & Jarad, Fahd, 2021. "Stability results of positive solutions for a system of ψ -Hilfer fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    2. Nazim I Mahmudov & Sameer Bawaneh & Areen Al-Khateeb, 2019. "On a Coupled System of Fractional Differential Equations with Four Point Integral Boundary Conditions," Mathematics, MDPI, vol. 7(3), pages 1-14, March.
    3. Nazim I Mahmudov & Areen Al-Khateeb, 2019. "Stability, Existence and Uniqueness of Boundary Value Problems for a Coupled System of Fractional Differential Equations," Mathematics, MDPI, vol. 7(4), pages 1-12, April.
    4. Bashir Ahmad & Ahmed Alsaedi & Sotiris K. Ntouyas & Hamed H. Al-Sulami, 2019. "On Neutral Functional Differential Inclusions involving Hadamard Fractional Derivatives," Mathematics, MDPI, vol. 7(11), pages 1-13, November.
    5. Rais Ahmad & Mohd Ishtyak & Arvind Kumar Rajpoot & Yuanheng Wang, 2022. "Solving System of Mixed Variational Inclusions Involving Generalized Cayley Operator and Generalized Yosida Approximation Operator with Error Terms in q -Uniformly Smooth Space," Mathematics, MDPI, vol. 10(21), pages 1-17, November.
    6. Agarwal, Ravi P. & Ahmad, Bashir & Garout, Doa’a & Alsaedi, Ahmed, 2017. "Existence results for coupled nonlinear fractional differential equations equipped with nonlocal coupled flux and multi-point boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 149-161.
    7. Abdelkader Moumen & Abdelaziz Mennouni, 2022. "A New Projection Method for a System of Fractional Cauchy Integro-Differential Equations via Vieta–Lucas Polynomials," Mathematics, MDPI, vol. 11(1), pages 1-14, December.
    8. Liu, Xiping & Jia, Mei, 2019. "Solvability and numerical simulations for BVPs of fractional coupled systems involving left and right fractional derivatives," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 230-242.
    9. Ahmad, Bashir & Ntouyas, Sotiris K. & Alsaedi, Ahmed, 2016. "On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 234-241.
    10. Ahmad, Bashir & Luca, Rodica, 2018. "Existence of solutions for sequential fractional integro-differential equations and inclusions with nonlocal boundary conditions," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 516-534.
    11. Sina Etemad & Sotiris K. Ntouyas & Bashir Ahmad & Shahram Rezapour & Jessada Tariboon, 2022. "Sequential Fractional Hybrid Inclusions: A Theoretical Study via Dhage’s Technique and Special Contractions," Mathematics, MDPI, vol. 10(12), pages 1-27, June.
    12. Jarunee Soontharanon & Saowaluck Chasreechai & Thanin Sitthiwirattham, 2019. "A Coupled System of Fractional Difference Equations with Nonlocal Fractional Sum Boundary Conditions on the Discrete Half-Line," Mathematics, MDPI, vol. 7(3), pages 1-22, March.
    13. Ahmad, Bashir & Luca, Rodica, 2017. "Existence of solutions for a sequential fractional integro-differential system with coupled integral boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 378-388.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:3985-:d:1243418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.