IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i18p3888-d1238470.html
   My bibliography  Save this article

Control of Network Bursting in a Model Spiking Network Supplied with Memristor—Implemented Plasticity

Author

Listed:
  • Sergey V. Stasenko

    (Research Laboratory Neuroelectronics and Memristive Nanomaterials (NEUROMENA Lab), Institute of Nanotechnologies, Electronics and Electronic Equipment Engineering, Southern Federal University, 347922 Taganrog, Russia
    Laboratory of Advanced Methods for High-Dimensional Data Analysis, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia)

  • Alexey N. Mikhaylov

    (Research Laboratory Neuroelectronics and Memristive Nanomaterials (NEUROMENA Lab), Institute of Nanotechnologies, Electronics and Electronic Equipment Engineering, Southern Federal University, 347922 Taganrog, Russia
    Laboratory of Memristor Nanoelectronics, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia)

  • Victor B. Kazantsev

    (Research Laboratory Neuroelectronics and Memristive Nanomaterials (NEUROMENA Lab), Institute of Nanotechnologies, Electronics and Electronic Equipment Engineering, Southern Federal University, 347922 Taganrog, Russia
    Laboratory of Advanced Methods for High-Dimensional Data Analysis, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia)

Abstract

We consider an unstructured neuron network model composed of excitatory and inhibitory neurons. The synaptic connections are supplied with spike timing-dependent plasticity (STDP). We take the STDP model implemented using a memristor. In normal conditions, the network forms so-called bursting discharges typical of unstructured living networks in dissociated neuronal cultures. Incorporating a biologically inspired model, we demonstrate how memristive plasticity emulates spike timing-dependent plasticity, which is crucial for regulating synchronous brain activity. We have found that, when the memristor-based STDP for inhibitory connections is activated, the bursting dynamics are suppressed and the network turns to a random spiking mode. The dependence of bursting properties on the degree of the memristor-based STDP plasticity is analyzed. These findings hold implications for advancing invasive neurointerfaces and for the identification and management of epileptiform activity.

Suggested Citation

  • Sergey V. Stasenko & Alexey N. Mikhaylov & Victor B. Kazantsev, 2023. "Control of Network Bursting in a Model Spiking Network Supplied with Memristor—Implemented Plasticity," Mathematics, MDPI, vol. 11(18), pages 1-14, September.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:3888-:d:1238470
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/18/3888/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/18/3888/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sergey V. Stasenko & Victor B. Kazantsev, 2023. "Bursting Dynamics of Spiking Neural Network Induced by Active Extracellular Medium," Mathematics, MDPI, vol. 11(9), pages 1-17, April.
    2. Wen, Zihao & Li, Zhijun & Li, Xiang, 2019. "Bursting oscillations and bifurcation mechanism in memristor-based Shimizu–Morioka system with two time scales," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 58-70.
    3. Ivan Kipelkin & Svetlana Gerasimova & Davud Guseinov & Dmitry Pavlov & Vladislav Vorontsov & Alexey Mikhaylov & Victor Kazantsev, 2023. "Mathematical and Experimental Model of Neuronal Oscillator Based on Memristor-Based Nonlinearity," Mathematics, MDPI, vol. 11(5), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bartłomiej Garda & Karol Bednarz, 2024. "Comprehensive Study of SDC Memristors for Resistive RAM Applications," Energies, MDPI, vol. 17(2), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Yue & Li, Yuxia, 2021. "Bifurcation and bursting oscillations in 2D non-autonomous discrete memristor-based hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    2. Wei, Mengke & Jiang, Wenan & Ma, Xindong & Zhang, Xiaofang & Han, Xiujing & Bi, Qinsheng, 2021. "Compound bursting dynamics in a parametrically and externally excited mechanical system," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    3. Danjin Zhang & Youhua Qian, 2023. "Bursting Oscillations in General Coupled Systems: A Review," Mathematics, MDPI, vol. 11(7), pages 1-16, April.
    4. Ma, Xindong & Xia, Daixian & Jiang, Wenan & Liu, Mao & Bi, Qinsheng, 2021. "Compound bursting behaviors in a forced Mathieu-van der Pol-Duffing system," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    5. Huang, Juanjuan & Bi, Qinsheng, 2023. "Mixed-mode bursting oscillations in the neighborhood of a triple Hopf bifurcation point induced by parametric low-frequency excitation," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    6. Zhang, Shaohua & Zhang, Hongli & Wang, Cong & Ma, Ping, 2020. "Bursting oscillations and bifurcation mechanism in a permanent magnet synchronous motor system with external load perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:3888-:d:1238470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.