Deep Learning-Based Classification of Abrasion and Ischemic Diabetic Foot Sores Using Camera-Captured Images
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Charles F. Manski, 2020. "Bounding the Predictive Values of COVID-19 Antibody Tests," NBER Working Papers 27226, National Bureau of Economic Research, Inc.
- Huma Saeed & Hassaan Malik & Umair Bashir & Aiesha Ahmad & Shafia Riaz & Maheen Ilyas & Wajahat Anwaar Bukhari & Muhammad Imran Ali Khan, 2022. "Blockchain technology in healthcare: A systematic review," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-31, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Virginia Milone & Antonio Fusco & Angelamaria De Feo & Marco Tatullo, 2024. "Clinical Impact of “Real World Data” and Blockchain on Public Health: A Scoping Review," IJERPH, MDPI, vol. 21(1), pages 1-14, January.
- Lee, Sokbae & Liao, Yuan & Seo, Myung Hwan & Shin, Youngki, 2021.
"Sparse HP filter: Finding kinks in the COVID-19 contact rate,"
Journal of Econometrics, Elsevier, vol. 220(1), pages 158-180.
- Sokbae Lee & Yuan Liao & Myung Hwan Seo & Youngki Shin, 2020. "Sparse HP Filter: Finding Kinks in the COVID-19 Contact Rate," Department of Economics Working Papers 2020-06, McMaster University.
- Sokbae Lee & Yuan Liao & Myung Hwan Seo & Youngki Shin, 2020. "Sparse HP Filter: Finding Kinks in the COVID-19 Contact Rate," Papers 2006.10555, arXiv.org, revised Jul 2020.
- Sokbae (Simon) Lee & Yuan Liao & Myung Hwan Seo & Youngki Shin, 2020. "Sparse HP filter: Finding kinks in the COVID-19 contact rate," CeMMAP working papers CWP32/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Sokbae Lee & Yuan Liao & Myung Hwan Seo & Youngki Shin, 2020. "Sparse HP Filter: Finding Kinks in the COVID-19 Contact Rate," Working Paper Series no136, Institute of Economic Research, Seoul National University.
- Domenico Depalo, 2021.
"True COVID-19 mortality rates from administrative data,"
Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(1), pages 253-274, January.
- Depalo, Domenico, 2020. "True Covid-19 mortality rates from administrative data," GLO Discussion Paper Series 630, Global Labor Organization (GLO).
- John Mullahy, 2020. "Discovering Treatment Effectiveness via Median Treatment Effects—Applications to COVID-19 Clinical Trials," NBER Working Papers 27895, National Bureau of Economic Research, Inc.
- Bollinger, Christopher R. & van Hasselt, Martijn, 2020. "Estimating the cumulative rate of SARS-CoV-2 infection," Economics Letters, Elsevier, vol. 197(C).
More about this item
Keywords
ischemic; deep learning; diabetic foot score; CNN; abrasion; image segmentation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:17:p:3793-:d:1232512. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.