IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i16p3567-d1219465.html
   My bibliography  Save this article

Cyberbullying Detection on Twitter Using Deep Learning-Based Attention Mechanisms and Continuous Bag of Words Feature Extraction

Author

Listed:
  • Suliman Mohamed Fati

    (Information Systems Department, Prince Sultan University, Riyadh 11586, Saudi Arabia)

  • Amgad Muneer

    (Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
    Department of Computer and Information Sciences, Universiti Teknologi Petronas, Seri Iskandar 32160, Malaysia)

  • Ayed Alwadain

    (Computer Science Department, Community College, King Saud University, Riyadh 11451, Saudi Arabia)

  • Abdullateef O. Balogun

    (Department of Computer and Information Sciences, Universiti Teknologi Petronas, Seri Iskandar 32160, Malaysia)

Abstract

Since social media platforms are widely used and popular, they have given us more opportunities than we can even imagine. Despite all of the known benefits, some users may abuse these opportunities to humiliate, insult, bully, and harass other people. This issue explains why there is a need to reduce such negative activities and create a safe cyberspace for innocent people by detecting cyberbullying activity. This study provides a comparative analysis of deep learning methods used to test and evaluate their effectiveness regarding a well-known global Twitter dataset. To recognize abusive tweets and overcome existing challenges, attention-based deep learning methods are introduced. The word2vec with CBOW concatenated formed the weights included in the embedding layer and was used to extract the features. The feature vector was input into a convolution and pooling mechanism, reducing the feature dimensionality while learning the position-invariant of the offensive words. A SoftMax function predicts feature classification. Using benchmark experimental datasets and well-known evaluation measures, the convolutional neural network model with attention-based long- and short-term memory was found to outperform other DL methods. The proposed cyberbullying detection methods were evaluated using benchmark experimental datasets and well-known evaluation measures. Finally, the results demonstrated the superiority of the attention-based 1D convolutional long short-term memory (Conv1DLSTM) classifier over the other implemented methods.

Suggested Citation

  • Suliman Mohamed Fati & Amgad Muneer & Ayed Alwadain & Abdullateef O. Balogun, 2023. "Cyberbullying Detection on Twitter Using Deep Learning-Based Attention Mechanisms and Continuous Bag of Words Feature Extraction," Mathematics, MDPI, vol. 11(16), pages 1-21, August.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3567-:d:1219465
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/16/3567/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/16/3567/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amgad Muneer & Suliman Mohamed Fati, 2020. "A Comparative Analysis of Machine Learning Techniques for Cyberbullying Detection on Twitter," Future Internet, MDPI, vol. 12(11), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ebrahim A. A. Ghaleb & P. D. D. Dominic & Suliman Mohamed Fati & Amgad Muneer & Rao Faizan Ali, 2021. "The Assessment of Big Data Adoption Readiness with a Technology–Organization–Environment Framework: A Perspective towards Healthcare Employees," Sustainability, MDPI, vol. 13(15), pages 1-33, July.
    2. José Manuel Ortiz-Marcos & María Tomé-Fernández & Christian Fernández-Leyva, 2021. "Cyberbullying Analysis in Intercultural Educational Environments Using Binary Logistic Regressions," Future Internet, MDPI, vol. 13(1), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3567-:d:1219465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.