IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i16p3537-d1218317.html
   My bibliography  Save this article

ProMatch: Semi-Supervised Learning with Prototype Consistency

Author

Listed:
  • Ziyu Cheng

    (School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510002, China)

  • Xianmin Wang

    (School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510002, China
    Institute of Artificial Intelligence and Blockchain, Guangzhou University, Guangzhou 511442, China)

  • Jing Li

    (School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510002, China)

Abstract

Recent state-of-the-art semi-supervised learning (SSL) methods have made significant advancements by combining consistency-regularization and pseudo-labeling in a joint learning paradigm. The core concept of these methods is to identify consistency targets (pseudo-labels) by selecting predicted distributions with high confidence from weakly augmented unlabeled samples. However, they often face the problem of erroneous high confident pseudo-labels, which can lead to noisy training. This issue arises due to two main reasons: (1) when the model is poorly calibrated, the prediction of a single sample may be overconfident and incorrect, and (2) propagating pseudo-labels from unlabeled samples can result in error accumulation due to the margin between the pseudo-label and the ground-truth label. To address this problem, we propose a novel consistency criterion called Prototype Consistency (PC) to improve the reliability of pseudo-labeling by leveraging the prototype similarities between labeled and unlabeled samples. First, we instantiate semantic-prototypes (centers of embeddings) and prediction-prototypes (centers of predictions) for each category using memory buffers that store the features of labeled examples. Second, for a given unlabeled sample, we determine the most similar semantic-prototype and prediction-prototype by assessing the similarities between the features of the unlabeled sample and the prototypes of the labeled samples. Finally, instead of using the prediction of the unlabeled sample as the pseudo-label, we select the most similar prediction-prototype as the consistency target, as long as the predicted category of the most similar prediction-prototype , the ground-truth category of the most similar semantic-prototype , and the ground-truth category of the most similar prediction-prototype are equivalent. By combining the PC approach with the techniques developed by the MixMatch family, our proposed ProMatch framework demonstrates significant performance improvements compared to previous algorithms on datasets such as CIFAR-10, CIFAR-100, SVHN, and Mini-ImageNet.

Suggested Citation

  • Ziyu Cheng & Xianmin Wang & Jing Li, 2023. "ProMatch: Semi-Supervised Learning with Prototype Consistency," Mathematics, MDPI, vol. 11(16), pages 1-17, August.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3537-:d:1218317
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/16/3537/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/16/3537/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3537-:d:1218317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.