IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i16p3461-d1213934.html
   My bibliography  Save this article

Rumor Detection in Social Media Based on Multi-Hop Graphs and Differential Time Series

Author

Listed:
  • Jianhong Chen

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

  • Wenyi Zhang

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

  • Hongcai Ma

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

  • Shan Yang

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

Abstract

The widespread dissemination of rumors (fake information) on online social media has had a detrimental impact on public opinion and the social environment. This necessitates the urgent need for efficient rumor detection methods. In recent years, deep learning techniques, including graph neural networks (GNNs) and recurrent neural networks (RNNs), have been employed to capture the spatiotemporal features of rumors. However, existing research has largely overlooked the limitations of traditional GNNs based on message-passing frameworks when dealing with rumor propagation graphs. In fact, due to the issues of excessive smoothing and gradient vanishing, traditional GNNs struggle to capture the interactive information among high-order neighbors when handling deep graphs, such as those in rumor propagation scenarios. Furthermore, previous methods used for learning the temporal features of rumors, whether based on dynamic graphs or time series, have overlooked the importance of differential temporal information. To address the aforementioned issues, this paper proposes a rumor detection model based on multi-hop graphs and differential time series. Specifically, this model consists of two components: the structural feature extraction module and the temporal feature extraction module. The former utilizes a multi-hop graph and the enhanced message passing framework to learn the high-order structural features of rumor propagation graphs. The latter explicitly models the differential time series to learn the temporal features of rumors. Extensive experiments conducted on multiple real-world datasets demonstrate that our proposed model outperforms the previous state-of-the-art methods.

Suggested Citation

  • Jianhong Chen & Wenyi Zhang & Hongcai Ma & Shan Yang, 2023. "Rumor Detection in Social Media Based on Multi-Hop Graphs and Differential Time Series," Mathematics, MDPI, vol. 11(16), pages 1-22, August.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3461-:d:1213934
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/16/3461/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/16/3461/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Guanghua, 2019. "ILSCR rumor spreading model to discuss the control of rumor spreading in emergency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 88-97.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Yingying & Huo, Liang’an & Zhao, Laijun, 2020. "Rumor spreading in complex networks under stochastic node activity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    2. Yin, Fulian & Jiang, Xinyi & Qian, Xiqing & Xia, Xinyu & Pan, Yanyan & Wu, Jianhong, 2022. "Modeling and quantifying the influence of rumor and counter-rumor on information propagation dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    3. Nwaibeh, E.A. & Chikwendu, C.R., 2023. "A deterministic model of the spread of scam rumor and its numerical simulations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 111-129.
    4. Li, Ming & Zhang, Hong & Georgescu, Paul & Li, Tan, 2021. "The stochastic evolution of a rumor spreading model with two distinct spread inhibiting and attitude adjusting mechanisms in a homogeneous social network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    5. Ding, Haixin & Xie, Li, 2023. "Simulating rumor spreading and rebuttal strategy with rebuttal forgetting: An agent-based modeling approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    6. Chunru Li & Zujun Ma, 2022. "Dynamics Analysis and Optimal Control for a Delayed Rumor-Spreading Model," Mathematics, MDPI, vol. 10(19), pages 1-25, September.
    7. Zhu, Honglan & Zhang, Xuebing & An, Qi, 2022. "Global stability of a rumor spreading model with discontinuous control strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3461-:d:1213934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.