IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i16p3438-d1212652.html
   My bibliography  Save this article

An Improved Mathematical Theory for Designing Membrane Deflection-Based Rain Gauges

Author

Listed:
  • Jun-Yi Sun

    (School of Civil Engineering, Chongqing University, Chongqing 400045, China
    Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing 400045, China)

  • Ning Li

    (School of Civil Engineering, Chongqing University, Chongqing 400045, China)

  • Xiao-Ting He

    (School of Civil Engineering, Chongqing University, Chongqing 400045, China
    Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing 400045, China)

Abstract

This paper is devoted to developing a more refined mathematical theory for designing the previously proposed membrane deflection-based rain gauges. The differential-integral equations governing the large deflection behavior of the membrane are improved by modifying the geometric equations, and more accurate power-series solutions of the large deflection problem are provided, resulting in a new and more refined mathematical theory for designing such rain gauges. Examples are presented to illustrate how to analyze the convergence of the power-series solutions and how to numerically calibrate membrane deflection-based linear rain gauges. In addition, some important issues are demonstrated, analyzed, and discussed, such as the superiority of the new mathematical theory over the old one, the reason why the classical geometric equations cause errors, and the influence of changing design parameters on the input–output relationships of rain gauges.

Suggested Citation

  • Jun-Yi Sun & Ning Li & Xiao-Ting He, 2023. "An Improved Mathematical Theory for Designing Membrane Deflection-Based Rain Gauges," Mathematics, MDPI, vol. 11(16), pages 1-32, August.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3438-:d:1212652
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/16/3438/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/16/3438/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yong-Sheng Lian & Jun-Yi Sun & Zhi-Hang Zhao & Xiao-Ting He & Zhou-Lian Zheng, 2020. "A Revisit of the Boundary Value Problem for Föppl–Hencky Membranes: Improvement of Geometric Equations," Mathematics, MDPI, vol. 8(4), pages 1-15, April.
    2. Xue Li & Jun-Yi Sun & Xiao-Chen Lu & Zhi-Xin Yang & Xiao-Ting He, 2021. "Steady Fluid–Structure Coupling Interface of Circular Membrane under Liquid Weight Loading: Closed-Form Solution for Differential-Integral Equations," Mathematics, MDPI, vol. 9(10), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue Li & Jun-Yi Sun & Xiao-Chen Lu & Zhi-Xin Yang & Xiao-Ting He, 2021. "Steady Fluid–Structure Coupling Interface of Circular Membrane under Liquid Weight Loading: Closed-Form Solution for Differential-Integral Equations," Mathematics, MDPI, vol. 9(10), pages 1-24, May.
    2. Jun-Yi Sun & Ji Wu & Xue Li & Xiao-Ting He, 2023. "An Exact In-Plane Equilibrium Equation for Transversely Loaded Large Deflection Membranes and Its Application to the Föppl-Hencky Membrane Problem," Mathematics, MDPI, vol. 11(15), pages 1-45, July.
    3. Lucas Jódar & Rafael Company, 2022. "Preface to “Mathematical Methods, Modelling and Applications”," Mathematics, MDPI, vol. 10(9), pages 1-2, May.
    4. Xiao-Ting He & Fei-Yan Li & Jun-Yi Sun, 2023. "Improved Power Series Solution of Transversely Loaded Hollow Annular Membranes: Simultaneous Modification of Out-of-Plane Equilibrium Equation and Radial Geometric Equation," Mathematics, MDPI, vol. 11(18), pages 1-26, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3438-:d:1212652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.