IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i14p3239-d1200797.html
   My bibliography  Save this article

Multi-Key Homomorphic Encryption Scheme with Multi-Output Programmable Bootstrapping

Author

Listed:
  • Lingwu Li

    (School of Computer and Electronic Information, Guangxi University, Nanning 530004, China)

  • Ruwei Huang

    (School of Computer and Electronic Information, Guangxi University, Nanning 530004, China)

Abstract

Multi-key Homomorphic Encryption (MKHE) scheme can homomorphically evaluate ciphertexts encrypted by different keys, which can effectively protect the privacy information of data holders in the joint computing of cloud services. Since the first full Homomorphic encryption scheme was proposed, bootstrapping is the only way to realize the arbitrary depth homomorphic computation of MKHE schemes. But bootstrap operation is quite expensive. In order to implement fast bootstrapping in MKHE schemes, previous works proposed multi-key TFHE schemes to implement low-latency bootstrapping and output a univariate function of messages after bootstrapping, called Programmable Bootstrapping (PBS). However, these schemes can only encrypt single-bit messages. PBS only outputs a function. And after a homomorphic operation, a bootstrap is required, which undoubtedly results in an increase in the cost of the whole multi-key homomorphic encryption operation. In this paper, we propose a MKHE scheme for multi-output PBS. For this purpose, we study the encryption method and homomorphic operation steps of MKHE, and add BFV homomorphic encryption multiplication and multi-key ciphertext relinearization. We separate the homomorphic operation from bootstrapping. We homomorphically evaluate test polynomials for multiple functions. In contrast to previous MKHE schemes, we support the output of multiple message-related functions with a single bootstrapping operation on the ciphertext. It is no longer limited to encrypting single-bit plaintext, and an effective ciphertext packaging technology is added. According to the analysis given in this paper, it is known that in the scenario of multi-party joint computation, the proposed scheme can be implemented with less bootstrapping when the same number of functions are homomorphically operated. This will effectively reduce the computational overhead.

Suggested Citation

  • Lingwu Li & Ruwei Huang, 2023. "Multi-Key Homomorphic Encryption Scheme with Multi-Output Programmable Bootstrapping," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3239-:d:1200797
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/14/3239/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/14/3239/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3239-:d:1200797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.