IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i14p3171-d1197518.html
   My bibliography  Save this article

Construction of a New 2D Hyperchaotic Map with Application in Efficient Pseudo-Random Number Generator Design and Color Image Encryption

Author

Listed:
  • Shenli Zhu

    (Software School, Xinjiang University, Urumqi 830091, China
    School of Computer Science and Engineering, Central South University, Changsha 410083, China)

  • Xiaoheng Deng

    (School of Computer Science and Engineering, Central South University, Changsha 410083, China)

  • Wendong Zhang

    (Software School, Xinjiang University, Urumqi 830091, China)

  • Congxu Zhu

    (School of Computer Science and Engineering, Central South University, Changsha 410083, China)

Abstract

This paper proposes a new two-dimensional discrete hyperchaotic system and utilizes it to design a pseudo-random number generator (PRNG) and an efficient color image encryption algorithm. This hyperchaotic system has very complex dynamic properties and can generate highly random chaotic sequences. The complex hyperchaotic characteristics of the system are confirmed via bifurcation diagram, chaotic attractor, Lyapunov exponents, correlation analysis, approximate entropy and permutation entropy. Compared with some traditional discrete chaotic systems, the new chaotic system has a larger range of chaotic parameters and more complex hyperchaotic characteristics, making it more suitable for application in information encryption. The proposed PRNG can generate highly random bit sequences that can fully pass all NIST testing items. The proposed color image encryption algorithm achieves cross-channel permutation and diffusion of pixels in parallel. These strategies not only greatly improve the encryption speed of color images, but also enhance the security level of cipher images. The simulation experiments and security analysis results show that the algorithm has strong robustness against differential attacks, statistical attacks and interference attacks, and has good application potential in real-time secure communication applications of color images.

Suggested Citation

  • Shenli Zhu & Xiaoheng Deng & Wendong Zhang & Congxu Zhu, 2023. "Construction of a New 2D Hyperchaotic Map with Application in Efficient Pseudo-Random Number Generator Design and Color Image Encryption," Mathematics, MDPI, vol. 11(14), pages 1-23, July.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3171-:d:1197518
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/14/3171/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/14/3171/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shijie Zhang & Lingfeng Liu & Hongyue Xiang, 2021. "A Novel Plain-Text Related Image Encryption Algorithm Based on LB Compound Chaotic Map," Mathematics, MDPI, vol. 9(21), pages 1-25, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elena Almaraz Luengo & Carlos Gragera, 2023. "Critical Analysis of Beta Random Variable Generation Methods," Mathematics, MDPI, vol. 11(24), pages 1-31, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Li-Hua & Luo, Hui-Xin & Wu, Rou-Qing & Zhou, Nan-Run, 2022. "New 4D chaotic system with hidden attractors and self-excited attractors and its application in image encryption based on RNG," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    2. Ding, Dawei & Zhu, Haifei & Zhang, Hongwei & Yang, Zongli & Xie, Dong, 2024. "An n-dimensional polynomial modulo chaotic map with controllable range of Lyapunov exponents and its application in color image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    3. Zhu, Shenli & Deng, Xiaoheng & Zhang, Wendong & Zhu, Congxu, 2023. "Secure image encryption scheme based on a new robust chaotic map and strong S-box," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 322-346.
    4. Hongyan Zang & Mengdan Tai & Xinyuan Wei, 2022. "Image Encryption Schemes Based on a Class of Uniformly Distributed Chaotic Systems," Mathematics, MDPI, vol. 10(7), pages 1-21, March.
    5. Man, Zhenlong, 2023. "Biometric information security based on double chaotic rotating diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    6. Shenli Zhu & Xiaoheng Deng & Wendong Zhang & Congxu Zhu, 2023. "Image Encryption Scheme Based on Newly Designed Chaotic Map and Parallel DNA Coding," Mathematics, MDPI, vol. 11(1), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3171-:d:1197518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.