IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i14p3161-d1196951.html
   My bibliography  Save this article

Improving Newton–Schulz Method for Approximating Matrix Generalized Inverse by Using Schemes with Memory

Author

Listed:
  • Alicia Cordero

    (Institute for Multidisciplinary Mathematics, Universitat Politècnica de València, 46022 Valencia, Spain)

  • Javier G. Maimó

    (Área de Ciencias Básicas y Ambientales, Instituto Tecnológico de Santo Domingo (INTEC), Av. Los Procéres, Gala, Santo Domingo 10602, Dominican Republic)

  • Juan R. Torregrosa

    (Institute for Multidisciplinary Mathematics, Universitat Politècnica de València, 46022 Valencia, Spain)

  • María P. Vassileva

    (Área de Ciencias Básicas y Ambientales, Instituto Tecnológico de Santo Domingo (INTEC), Av. Los Procéres, Gala, Santo Domingo 10602, Dominican Republic)

Abstract

Some iterative schemes with memory were designed for approximating the inverse of a nonsingular square complex matrix and the Moore–Penrose inverse of a singular square matrix or an arbitrary m × n complex matrix. A Kurchatov-type scheme and Steffensen’s method with memory were developed for estimating these types of inverses, improving, in the second case, the order of convergence of the Newton–Schulz scheme. The convergence and its order were studied in the four cases, and their stability was checked as discrete dynamical systems. With large matrices, some numerical examples are presented to confirm the theoretical results and to compare the results obtained with the proposed methods with those provided by other known ones.

Suggested Citation

  • Alicia Cordero & Javier G. Maimó & Juan R. Torregrosa & María P. Vassileva, 2023. "Improving Newton–Schulz Method for Approximating Matrix Generalized Inverse by Using Schemes with Memory," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3161-:d:1196951
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/14/3161/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/14/3161/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Campos, Beatriz & Cordero, Alicia & Torregrosa, Juan R. & Vindel, Pura, 2015. "A multidimensional dynamical approach to iterative methods with memory," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 701-715.
    2. Cong-Trang Nguyen & Yao-Wen Tsai, 2017. "Finite-Time Output Feedback Controller Based on Observer for the Time-Varying Delayed Systems: A Moore-Penrose Inverse Approach," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-13, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alicia Cordero & Javier G. Maimó & Juan R. Torregrosa & María P. Vassileva, 2019. "Iterative Methods with Memory for Solving Systems of Nonlinear Equations Using a Second Order Approximation," Mathematics, MDPI, vol. 7(11), pages 1-12, November.
    2. F. I. Chicharro & A. Cordero & J. R. Torregrosa & M. P. Vassileva, 2017. "King-Type Derivative-Free Iterative Families: Real and Memory Dynamics," Complexity, Hindawi, vol. 2017, pages 1-15, October.
    3. Francisco I. Chicharro & Alicia Cordero & Neus Garrido & Juan R. Torregrosa, 2020. "Impact on Stability by the Use of Memory in Traub-Type Schemes," Mathematics, MDPI, vol. 8(2), pages 1-16, February.
    4. Alicia Cordero & Beny Neta & Juan R. Torregrosa, 2021. "Memorizing Schröder’s Method as an Efficient Strategy for Estimating Roots of Unknown Multiplicity," Mathematics, MDPI, vol. 9(20), pages 1-13, October.
    5. Cordero, Alicia & Soleymani, Fazlollah & Torregrosa, Juan R. & Haghani, F. Khaksar, 2017. "A family of Kurchatov-type methods and its stability," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 264-279.
    6. Xiaofeng Wang & Qiannan Fan, 2020. "A Modified Ren’s Method with Memory Using a Simple Self-Accelerating Parameter," Mathematics, MDPI, vol. 8(4), pages 1-12, April.
    7. Cordero, Alicia & Soto-Quiros, Pablo & Torregrosa, Juan R., 2021. "A general class of arbitrary order iterative methods for computing generalized inverses," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    8. Ramandeep Behl & Alicia Cordero & Juan R. Torregrosa & Sonia Bhalla, 2021. "A New High-Order Jacobian-Free Iterative Method with Memory for Solving Nonlinear Systems," Mathematics, MDPI, vol. 9(17), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3161-:d:1196951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.