IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i14p3154-d1196763.html
   My bibliography  Save this article

A Social Media Knowledge Retrieval Method Based on Knowledge Demands and Knowledge Supplies

Author

Listed:
  • Runsheng Miao

    (College of Communication and Art Design, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Yuchen Huang

    (College of Communication and Art Design, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Zhenyu Zhang

    (School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China)

Abstract

In large social media knowledge retrieval systems, employing a keyword-based fuzzy matching method to obtain knowledge presents several challenges, such as irrelevant, inaccurate, disorganized, or non-systematic knowledge results. Therefore, this paper proposes a knowledge retrieval method capable of returning hierarchical, systematized knowledge results. The method can match the knowledge demands according to the keyword input by users and then present the knowledge supplies corresponding to the knowledge demands as results to the users. Firstly, a knowledge structure named Knowledge Demand is designed to represent the genuine needs of social media users. This knowledge structure measures the popularity of topic combinations in the Topic Map, so the topic combinations with high popularity are regarded as the main content of the Knowledge Demands. Secondly, the proposed method designs a hierarchical and systematic knowledge structure, named Knowledge Supply, which provides Knowledge Solutions matched with the Knowledge Demands. The Knowledge Supply is generated based on the Knowledge Element Repository, using the BLEU similarity matrix to retrieve Knowledge Elements with high similarity, and then clustering these Knowledge Elements into several knowledge schemes to extract the Knowledge Solutions. The organized Knowledge Elements and Knowledge Solutions are the presentation of each Knowledge Supply. Finally, this research crawls posts in the “Autohome Forum” and conducts an experiment by simulating the user’s actual knowledge search process. The experiment shows that the proposed method is an effective knowledge retrieval method, which can provide users with hierarchical and systematized knowledge.

Suggested Citation

  • Runsheng Miao & Yuchen Huang & Zhenyu Zhang, 2023. "A Social Media Knowledge Retrieval Method Based on Knowledge Demands and Knowledge Supplies," Mathematics, MDPI, vol. 11(14), pages 1-27, July.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3154-:d:1196763
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/14/3154/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/14/3154/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Koenraad De Smedt & Dimitris Koureas & Peter Wittenburg, 2020. "FAIR Digital Objects for Science: From Data Pieces to Actionable Knowledge Units," Publications, MDPI, vol. 8(2), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Schweikert & Karl-Uwe Stucky & Wolfgang Süß & Veit Hagenmeyer, 2023. "A Photovoltaic System Model Integrating FAIR Digital Objects and Ontologies," Energies, MDPI, vol. 16(3), pages 1-21, February.
    2. Henrik tom Wörden & Florian Spreckelsen & Stefan Luther & Ulrich Parlitz & Alexander Schlemmer, 2024. "Mapping Hierarchical File Structures to Semantic Data Models for Efficient Data Integration into Research Data Management Systems," Data, MDPI, vol. 9(2), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3154-:d:1196763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.