Author
Listed:
- Jile Chen
(School of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China)
- Peimin Zhu
(School of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China)
Abstract
The LU factorization of very large sparse matrices requires a significant amount of computing resources, including memory and broadband communication. A hybrid MPI + OpenMP + CUDA algorithm named SuperLU3D can efficiently compute the LU factorization with GPU acceleration. However, this algorithm faces difficulties when dealing with very large sparse matrices with limited GPU resources. Factorizing very large matrices involves a vast amount of nonblocking communication between processes, often leading to a break in SuperLU3D calculation due to the overflow of cluster communication buffers. In this paper, we present an improved GPU-accelerated algorithm named SuperLU3D_Alternate for the LU factorization of very large sparse matrices with fewer GPU resources. The basic idea is “divide and conquer”, which means dividing a very large matrix into multiple submatrices, performing LU factorization on each submatrix, and then assembling the factorized results of all submatrices into two complete matrices L and U . In detail, according to the number of available GPUs, a very large matrix is first divided into multiple submatrices using the elimination tree. Then, the LU factorization of each submatrix is alternately computed with limited GPU resources, and its intermediate LU factors from GPUs are saved to the host memory or hard disk. Finally, after finishing the LU factorization of all submatrices, these factorized submatrices are assembled into a complete lower triangular matrix L and a complete upper triangular matrix U , respectively. The SuperLU3D_Alternate algorithm is suitable for hybrid CPU/GPU cluster systems, especially for a subset of nodes without GPUs. To accommodate different hardware resources in various clusters, we designed the algorithm to run in the following three cases: sufficient memory for GPU nodes, insufficient memory for GPU nodes, and insufficient memory for the entire cluster. The results from LU factorization test on different matrices in various cases show that the larger the matrix is, the more efficient this algorithm is under the same GPU memory consumption. In our numerical experiments, SuperLU3D_Alternate achieves speeds of up to 8× that of SuperLU3D (CPU only) and 2.5× that of SuperLU3D (CPU + GPU) on the hybrid cluster with six Tesla V100S GPUs. Furthermore, when the matrix is too big to be handled by SuperLU3D, SuperLU3D_Alternate can still utilize the cluster’s host memory or hard disk to solve it. By reducing the amount of data exchange to prevent exceeding the buffer’s limit of the cluster MPI nonblocking communication, our algorithm enhances the stability of the program.
Suggested Citation
Jile Chen & Peimin Zhu, 2023.
"An Alternate GPU-Accelerated Algorithm for Very Large Sparse LU Factorization,"
Mathematics, MDPI, vol. 11(14), pages 1-23, July.
Handle:
RePEc:gam:jmathe:v:11:y:2023:i:14:p:3149-:d:1196010
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3149-:d:1196010. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.