IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i14p3044-d1190173.html
   My bibliography  Save this article

Invadopodia Formation in Cancer Cell: The Mathematical and Computational Modelling Based on Free Boundary Problem

Author

Listed:
  • Muhammad Akmal Ramlee

    (Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, Jalan Datuk Mohd Musa, 94300 Kota Samarahan, Sarawak, Malaysia)

  • Nuha Loling Othman

    (Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, Jalan Datuk Mohd Musa, 94300 Kota Samarahan, Sarawak, Malaysia)

  • Takashi Suzuki

    (Center for Mathematical Modeling and Data Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka City 560-8531, Osaka, Japan)

Abstract

We present a mathematical model of an individual cell to expand the simulation of invadopodia formation to a three-dimensional (3D) domain for a more realistic complexity. Simulating invadopodia replication in order for it to be biologically relevant is important since it helps us to understand cancer invasion and metastasis better as well as giving some insight into investigating ways to stop the spread of this fatal disease. Invadopodia formation is formulated using the Stefan problem approach, where the free boundary is characterised by the Stefan free boundary condition, in which the boundary membrane is not known in advance. Level set method is proposed to indicate the behaviour of the cell interface and the motion of the plasma membrane. An enthalpy method (phase-transition problem) is used to describe the cell membrane diffusion. In addition to this, we were able to improve the simulation outcome, giving it a more realistic complexity by using a different simulation technique and domain as well as a different data set. Singularities and instabilities were eliminated. The results that were achieved have the potential to be helpful for novel approaches or to be extended to other methods in the development of a more accurate numerical simulation.

Suggested Citation

  • Muhammad Akmal Ramlee & Nuha Loling Othman & Takashi Suzuki, 2023. "Invadopodia Formation in Cancer Cell: The Mathematical and Computational Modelling Based on Free Boundary Problem," Mathematics, MDPI, vol. 11(14), pages 1-17, July.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3044-:d:1190173
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/14/3044/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/14/3044/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3044-:d:1190173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.