IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i13p2976-d1186189.html
   My bibliography  Save this article

Invertibility and Fredholm Property of Fock Toeplitz Operators

Author

Listed:
  • Chunxu Xu

    (School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China)

  • Tao Yu

    (School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China)

Abstract

We characterize some necessary and sufficient conditions of invertible Toeplitz operators acting on the Fock space. In particular, we study the Fredholm properties of Toeplitz operators with B M O 1 symbols, where their Berezin transforms are bounded functions of vanishing oscillation. We show the Fredholm index of the Toeplitz operator via the winding of its Berezin transform along a sufficiently large circle and provide a characterization of invertible Toeplitz operators with non-negative symbols, possibly unbounded, such that the Berezin transforms of the symbols are bounded and of vanishing oscillation.

Suggested Citation

  • Chunxu Xu & Tao Yu, 2023. "Invertibility and Fredholm Property of Fock Toeplitz Operators," Mathematics, MDPI, vol. 11(13), pages 1-9, July.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:13:p:2976-:d:1186189
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/13/2976/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/13/2976/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nina Zorboska, 2003. "Toeplitz operators with BMO symbols and the Berezin transform," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2003, pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:13:p:2976-:d:1186189. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.