IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i13p2891-d1180969.html
   My bibliography  Save this article

Fault Prediction of Control Clusters Based on an Improved Arithmetic Optimization Algorithm and BP Neural Network

Author

Listed:
  • Tao Xu

    (The College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    Jiangsu Automation Research Institute, Lianyungang 222061, China)

  • Zeng Gao

    (The College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)

  • Yi Zhuang

    (The College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)

Abstract

Higher accuracy in cluster failure prediction can ensure the long-term stable operation of cluster systems and effectively alleviate energy losses caused by system failures. Previous works have mostly employed BP neural networks (BPNNs) to predict system faults, but this approach suffers from reduced prediction accuracy due to the inappropriate initialization of weights and thresholds. To address these issues, this paper proposes an improved arithmetic optimization algorithm (AOA) to optimize the initial weights and thresholds in BPNNs. Specifically, we first introduced an improved AOA via multi-subpopulation and comprehensive learning strategies, called MCLAOA. This approach employed multi-subpopulations to effectively alleviate the poor global exploration performance caused by a single elite, and the comprehensive learning strategy enhanced the exploitation performance via information exchange among individuals. More importantly, a nonlinear strategy with a tangent function was designed to ensure a smooth balance and transition between exploration and exploitation. Secondly, the proposed MCLAOA was utilized to optimize the initial weights and thresholds of BPNNs in cluster fault prediction, which could enhance the accuracy of fault prediction models. Finally, the experimental results for 23 benchmark functions, CEC2020 benchmark problems, and two engineering examples demonstrated that the proposed MCLAOA outperformed other swarm intelligence algorithms. For the 23 benchmark functions, it improved the optimal solutions in 16 functions compared to the basic AOA. The proposed fault prediction model achieved comparable performance to other swarm-intelligence-based BPNN models. Compared to basic BPNNs and AOA-BPNNs, the MCLAOA-BPNN showed improvements of 2.0538 and 0.8762 in terms of mean absolute percentage error, respectively.

Suggested Citation

  • Tao Xu & Zeng Gao & Yi Zhuang, 2023. "Fault Prediction of Control Clusters Based on an Improved Arithmetic Optimization Algorithm and BP Neural Network," Mathematics, MDPI, vol. 11(13), pages 1-28, June.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:13:p:2891-:d:1180969
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/13/2891/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/13/2891/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nebojsa Bacanin & Ruxandra Stoean & Miodrag Zivkovic & Aleksandar Petrovic & Tarik A. Rashid & Timea Bezdan, 2021. "Performance of a Novel Chaotic Firefly Algorithm with Enhanced Exploration for Tackling Global Optimization Problems: Application for Dropout Regularization," Mathematics, MDPI, vol. 9(21), pages 1-33, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dušan S. Radivojević & Ivan M. Lazović & Nikola S. Mirkov & Uzahir R. Ramadani & Dušan P. Nikezić, 2023. "A Comparative Evaluation of Self-Attention Mechanism with ConvLSTM Model for Global Aerosol Time Series Forecasting," Mathematics, MDPI, vol. 11(7), pages 1-13, April.
    2. Luka Jovanovic & Dejan Jovanovic & Nebojsa Bacanin & Ana Jovancai Stakic & Milos Antonijevic & Hesham Magd & Ravi Thirumalaisamy & Miodrag Zivkovic, 2022. "Multi-Step Crude Oil Price Prediction Based on LSTM Approach Tuned by Salp Swarm Algorithm with Disputation Operator," Sustainability, MDPI, vol. 14(21), pages 1-29, November.
    3. Marco Boresta & Diego Maria Pinto & Giuseppe Stecca, 2024. "Bridging operations research and machine learning for service cost prediction in logistics and service industries," Annals of Operations Research, Springer, vol. 342(1), pages 113-139, November.
    4. Zaid Bin Mushtaq & Shoaib Mohd Nasti & Chaman Verma & Maria Simona Raboaca & Neerendra Kumar & Samiah Jan Nasti, 2022. "Super Resolution for Noisy Images Using Convolutional Neural Networks," Mathematics, MDPI, vol. 10(5), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:13:p:2891-:d:1180969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.