IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i12p2710-d1171639.html
   My bibliography  Save this article

RDAF-IIoT: Reliable Device-Access Framework for the Industrial Internet of Things

Author

Listed:
  • Hisham Alasmary

    (Department of Computer Science, College of Computer Science, King Khalid University, Abha 61421, Saudi Arabia)

Abstract

The Internet of Things (IoT) has experienced significant growth and is now a fundamental part of the next-generation Internet. Alongside improving daily life, IoT devices generate and collect vast amounts of data that can be leveraged by AI-enabled big data analytics for diverse applications. However, due to the machine-to-machine communication inherent in IoT, ensuring data security and privacy is crucial to mitigate various malicious cyber attacks, including man-in-the-middle, impersonation, and data poisoning attacks. Nevertheless, designing an efficient and adaptable IoT security framework poses challenges due to the limited computational and communication power of IoT devices, as well as their wide-ranging variety. To address these challenges, this paper proposes an Access Key Agreement (AKA) scheme called the “Reliable Device-Access Framework for the Industrial IoT (RDAF-IIoT)”. RDAF-IIoT verifies the user’s authenticity before granting access to real-time information from IIoT devices deployed in an industrial plant. Once authenticated at the gateway node, the user and IIoT device establish a session key for future encrypted communication. The security of the proposed RDAF-IIoT is validated using a random oracle model, while the Scyther tool is employed to assess its resilience against various security attacks. Performance evaluations demonstrate that the proposed scheme requires lower computational and communication costs compared to related security frameworks while providing enhanced security features.

Suggested Citation

  • Hisham Alasmary, 2023. "RDAF-IIoT: Reliable Device-Access Framework for the Industrial Internet of Things," Mathematics, MDPI, vol. 11(12), pages 1-21, June.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:12:p:2710-:d:1171639
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/12/2710/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/12/2710/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:12:p:2710-:d:1171639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.