IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i11p2480-d1157837.html
   My bibliography  Save this article

Robust Surveillance Schemes Based on Proportional Hazard Model for Monitoring Reliability Data

Author

Listed:
  • Moezza Nabeel

    (Department of Statistics, Quaid-i-Azam University, Islamabad 45320, Pakistan
    These authors contributed equally to this work.)

  • Sajid Ali

    (Department of Statistics, Quaid-i-Azam University, Islamabad 45320, Pakistan
    These authors contributed equally to this work.)

  • Ismail Shah

    (Department of Statistics, Quaid-i-Azam University, Islamabad 45320, Pakistan
    These authors contributed equally to this work.)

  • Mohammed M. A. Almazah

    (Department of Mathematics, College of Sciences and Arts (Muhyil), King Khalid University, Muhyil 61421, Saudi Arabia
    These authors contributed equally to this work.)

  • Fuad S. Al-Duais

    (Mathematics Department, College of Humanities and Science, Prince Sattam Bin Abdulaziz University, Al Aflaj 16278, Saudi Arabia
    Administration Department, Administrative Science College, Thamar University, Thamar 87246, Yemen
    These authors contributed equally to this work.)

Abstract

Product reliability is a crucial component of the industrial production process. Several statistical process control techniques have been successfully employed in industrial manufacturing processes to observe changes in reliability-related quality variables. These methods, however, are only applicable to single-stage processes. In reality, manufacturing processes consist of several stages, and the quality variable of the previous stages influences the quality of the present stage. This interdependence between the stages of a multistage process is an important characteristic that must be taken into account in process monitoring. In addition, sometimes datasets contain outliers and consequently, the analysis produces biased results. This study discusses the issue of monitoring reliability data with outliers. To this end, a proportional hazard model has been assumed to model the relationship between the significant quality variables of a two-stage dependent manufacturing process. Robust regression technique known as the M-estimation has been implemented to lessen the effect of outliers present in the dataset corresponding to reliability-related quality characteristics in the second stage of the process assuming Nadarajah and Haghighi distribution. The three monitoring approaches, namely, one lower-sided cumulative sum and two one-sided exponentially weighted moving average control charts have been designed to effectively monitor the two-stage dependent process. Using Monte Carlo simulations, the efficiency of the suggested monitoring schemes has been examined. Finally, two real-world examples of the proposed control approaches are provided in the study.

Suggested Citation

  • Moezza Nabeel & Sajid Ali & Ismail Shah & Mohammed M. A. Almazah & Fuad S. Al-Duais, 2023. "Robust Surveillance Schemes Based on Proportional Hazard Model for Monitoring Reliability Data," Mathematics, MDPI, vol. 11(11), pages 1-21, May.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:11:p:2480-:d:1157837
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/11/2480/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/11/2480/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elisa Cabana & Rosa E. Lillo & Henry Laniado, 2021. "Multivariate outlier detection based on a robust Mahalanobis distance with shrinkage estimators," Statistical Papers, Springer, vol. 62(4), pages 1583-1609, August.
    2. Zheng, Rui & Wang, Jingjing & Zhang, Yingzhi, 2023. "A hybrid repair-replacement policy in the proportional hazards model," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1011-1021.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laifa Tao & Haifei Liu & Jiqing Zhang & Xuanyuan Su & Shangyu Li & Jie Hao & Chen Lu & Mingliang Suo & Chao Wang, 2022. "Associated Fault Diagnosis of Power Supply Systems Based on Graph Matching: A Knowledge and Data Fusion Approach," Mathematics, MDPI, vol. 10(22), pages 1-28, November.
    2. Guo, Peng & Gan, Yu & Infield, David, 2022. "Wind turbine performance degradation monitoring using DPGMM and Mahalanobis distance," Renewable Energy, Elsevier, vol. 200(C), pages 1-9.
    3. Duan, Chaoqun & Gong, Ting & Yan, Liangwen & Li, Xinmin, 2024. "Bi-level corrected residual life-based maintenance for deteriorating systems under competing risks," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    4. Peng, Shizhe & Jiang, Wei & Huang, Wenpo & Luo, Qinglin, 2024. "The impact of gamma usage processes on preventive maintenance policies under two-dimensional warranty," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    5. Brenton R. Clarke & Andrew Grose, 2023. "A further study comparing forward search multivariate outlier methods including ATLA with an application to clustering," Statistical Papers, Springer, vol. 64(2), pages 395-420, April.
    6. Wang, Jiantai & Zhou, Shihan & Peng, Rui & Qiu, Qingan & Yang, Li, 2023. "An inspection-based replacement planning in consideration of state-driven imperfect inspections," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    7. Iketle Aretha Maharela & Lizelle Fletcher & Ding-Geng Chen, 2024. "Modified Cox Models: A Simulation Study on Different Survival Distributions, Censoring Rates, and Sample Sizes," Mathematics, MDPI, vol. 12(18), pages 1-10, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:11:p:2480-:d:1157837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.