IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i11p2451-d1155849.html
   My bibliography  Save this article

A Mathematical Interpretation of Autoregressive Generative Pre-Trained Transformer and Self-Supervised Learning

Author

Listed:
  • Minhyeok Lee

    (School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea)

Abstract

In this paper, we present a rigorous mathematical examination of generative pre-trained transformer (GPT) models and their autoregressive self-supervised learning mechanisms. We begin by defining natural language space and knowledge space, which are two key concepts for understanding the dimensionality reduction process in GPT-based large language models (LLMs). By exploring projection functions and their inverses, we establish a framework for analyzing the language generation capabilities of these models. We then investigate the GPT representation space, examining its implications for the models’ approximation properties. Finally, we discuss the limitations and challenges of GPT models and their learning mechanisms, considering trade-offs between complexity and generalization, as well as the implications of incomplete inverse projection functions. Our findings demonstrate that GPT models possess the capability to encode knowledge into low-dimensional vectors through their autoregressive self-supervised learning mechanism. This comprehensive analysis provides a solid mathematical foundation for future advancements in GPT-based LLMs, promising advancements in natural language processing tasks such as language translation, text summarization, and question answering due to improved understanding and optimization of model training and performance.

Suggested Citation

  • Minhyeok Lee, 2023. "A Mathematical Interpretation of Autoregressive Generative Pre-Trained Transformer and Self-Supervised Learning," Mathematics, MDPI, vol. 11(11), pages 1-19, May.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:11:p:2451-:d:1155849
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/11/2451/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/11/2451/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:11:p:2451-:d:1155849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.