IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i10p2375-d1151415.html
   My bibliography  Save this article

The Geometry of Feature Space in Deep Learning Models: A Holistic Perspective and Comprehensive Review

Author

Listed:
  • Minhyeok Lee

    (School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea)

Abstract

As the field of deep learning experiences a meteoric rise, the urgency to decipher the complex geometric properties of feature spaces, which underlie the effectiveness of diverse learning algorithms and optimization techniques, has become paramount. In this scholarly review, a comprehensive, holistic outlook on the geometry of feature spaces in deep learning models is provided in order to thoroughly probe the interconnections between feature spaces and a multitude of influential factors such as activation functions, normalization methods, and model architectures. The exploration commences with an all-encompassing examination of deep learning models, followed by a rigorous dissection of feature space geometry, delving into manifold structures, curvature, wide neural networks and Gaussian processes, critical points and loss landscapes, singular value spectra, and adversarial robustness, among other notable topics. Moreover, transfer learning and disentangled representations in feature space are illuminated, accentuating the progress and challenges in these areas. In conclusion, the challenges and future research directions in the domain of feature space geometry are outlined, emphasizing the significance of comprehending overparameterized models, unsupervised and semi-supervised learning, interpretable feature space geometry, topological analysis, and multimodal and multi-task learning. Embracing a holistic perspective, this review aspires to serve as an exhaustive guide for researchers and practitioners alike, clarifying the intricacies of the geometry of feature spaces in deep learning models and mapping the trajectory for future advancements in this enigmatic and enthralling domain.

Suggested Citation

  • Minhyeok Lee, 2023. "The Geometry of Feature Space in Deep Learning Models: A Holistic Perspective and Comprehensive Review," Mathematics, MDPI, vol. 11(10), pages 1-43, May.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:10:p:2375-:d:1151415
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/10/2375/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/10/2375/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minhyeok Lee, 2023. "Recent Advances in Generative Adversarial Networks for Gene Expression Data: A Comprehensive Review," Mathematics, MDPI, vol. 11(14), pages 1-26, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:10:p:2375-:d:1151415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.