IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i10p2237-d1143850.html
   My bibliography  Save this article

Night Vision Anti-Halation Algorithm of Different-Source Image Fusion Based on Low-Frequency Sequence Generation

Author

Listed:
  • Quanmin Guo

    (School of Electronic and Information Engineering, Xi’an Technological University, Xi’an 710021, China)

  • Jiahao Liang

    (School of Electronic and Information Engineering, Xi’an Technological University, Xi’an 710021, China)

  • Hanlei Wang

    (School of Electronic and Information Engineering, Xi’an Technological University, Xi’an 710021, China)

Abstract

The abuse of high beam lights dazzles the opposite drivers when the vehicles meet at night, which can easily cause traffic accidents. The existing night vision anti-halation algorithms based on different-source image fusion can eliminate halation and obtain fusion images with rich color and details. However, the algorithms mistakenly eliminate some high-brightness important information. In order to address the problem, a night vision anti-halation algorithm based on low-frequency sequence generation is proposed. The low-frequency sequence generation model is constructed to generate image sequences with different degrees of halation elimination. According to the estimated illuminance for image sequences, the proposed sequence synthesis based on visual information maximization assigns a large weight to the areas with good brightness so as to obtain the fusion image without halation and with rich details. In four typical halation scenes covering most cases of night driving, the proposed algorithm effectively eliminates halation while retaining useful high-brightness information and has better universality than the other seven advanced comparison algorithms. The experimental results show that the fusion image obtained by the proposed algorithm is more suitable for human visual perception and helps to improve night driving safety.

Suggested Citation

  • Quanmin Guo & Jiahao Liang & Hanlei Wang, 2023. "Night Vision Anti-Halation Algorithm of Different-Source Image Fusion Based on Low-Frequency Sequence Generation," Mathematics, MDPI, vol. 11(10), pages 1-24, May.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:10:p:2237-:d:1143850
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/10/2237/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/10/2237/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Min Li & Dachuan Xu & Dongmei Zhang & Juan Zou, 2020. "The seeding algorithms for spherical k-means clustering," Journal of Global Optimization, Springer, vol. 76(4), pages 695-708, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyun Tian & Dachuan Xu & Donglei Du & Ling Gai, 2022. "The spherical k-means++ algorithm via local search scheme," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2375-2394, November.
    2. Jinqi Su & Changhong Dong & Ke Su & Lin He, 2023. "Research on the Construction of Digital Economy Index System Based on K-means-SA Algorithm," SAGE Open, , vol. 13(4), pages 21582440231, December.
    3. Fei Chen & Zhiyang Wang & Yu He, 2023. "A Deep Neural Network-Based Optimal Scheduling Decision-Making Method for Microgrids," Energies, MDPI, vol. 16(22), pages 1-17, November.
    4. Peipei You & Sitao Li & Chengren Li & Chao Zhang & Hailang Zhou & Huicai Wang & Huiru Zhao & Yihang Zhao, 2023. "Price-Based Demand Response: A Three-Stage Monthly Time-of-Use Tariff Optimization Model," Energies, MDPI, vol. 16(23), pages 1-20, November.
    5. Yishui Wang & Chenchen Wu & Dongmei Zhang & Juan Zou, 2022. "An approximation algorithm for the spherical k-means problem with outliers by local search," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2410-2422, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:10:p:2237-:d:1143850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.