Author
Listed:
- Vito Antonio Cimmelli
(Department of Mathematics, Computer Science and Economics, University of Basilicata, Viale dell’Ateneo Lucano, 10, 85100 Potenza, Italy)
Abstract
According to second law of thermodynamics, the local entropy production must be nonnegative for arbitrary thermodynamic processes. In 1996, Muschik and Ehrentraut observed that such a constraint can be fulfilled in two different ways: either by postulating a suitable form of the constitutive equations, or by selecting among the solutions of the systems of balance laws those which represent physically realizable thermodynamic processes. Hence, they proposed an amendment to the second law which assumes that reversible process directions in state space exist only in correspondence with equilibrium states. Such an amendment allowed them to prove that the restriction of the constitutive equations is the sole possible consequence of non-negative entropy production. Recently, Cimmelli and Rogolino revisited the classical result by Muschik and Ehrentraut from a geometric perspective and included the amendment in a more general formulation of the second law. Herein, we extend this result to nonregular processes, i.e., to solutions of balance laws which admit jump discontinuities across a given surface. Two applications of these results are presented: the thermodynamics of an interface separating two different phases of a Korteweg fluid, and the derivation of the thermodynamic conditions necessary for shockwave formation. Commonly, for shockwaves the second law is regarded as a restriction on the thermodynamic processes rather than on the constitutive equations, as only perturbations for which the entropy continues to grow across the shock can propagate. We prove that this is indeed a consequence of the general property of the second law of thermodynamics that restricts the constitutive equations for nonregular processes. An analysis of shockwave propagation in different thermodynamic theories is developped as well.
Suggested Citation
Vito Antonio Cimmelli, 2022.
"Entropy Principle and Shock-Wave Propagation in Continuum Physics,"
Mathematics, MDPI, vol. 11(1), pages 1-22, December.
Handle:
RePEc:gam:jmathe:v:11:y:2022:i:1:p:162-:d:1018144
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2022:i:1:p:162-:d:1018144. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.