IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2022i1p158-d1018067.html
   My bibliography  Save this article

A Framework to Analyze Function Domains of Autonomous Transportation Systems Based on Text Analysis

Author

Listed:
  • Xiangzhi Huang

    (School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China)

  • Xuekai Cen

    (School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China)

  • Ming Cai

    (School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou 510275, China)

  • Rui Zhou

    (School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China)

Abstract

With the development of information and communication technologies, the current intelligent transportation systems (ITSs) will gradually become automated and connected, and can be treated as autonomous transportation systems (ATSs). Function, which unites cutting-edge technology with ATS services as a fundamental component of ATS operation, should be categorized into function domains to more clearly show how ATS operates. Existing ITS function domains are classified mostly based on the experience of experts or the needs of practitioners, using vague classification criteria. To ensure tractability, we aim to categorize ATS functions into function domains based on text analysis, minimizing the reliance on subjective experience. First, we introduce the Latent Dirichlet Allocation (LDA) topic model to extract text features of functions into distribution weights, reflecting the semantics of the text data. Second, based on the LDA model, we categorize ATS functions into twelve function domains by the k-means method. The comparison between the proposed function domains and the existing counterparts of other ITS framework demonstrates the effectiveness of the LDA-based classification method. This study provides a reference for text processing and function classification of ATS architecture. The proposed functions and function domains reveal the objectives in future transportation systems, which could guide urban planners or engineers to better design control strategies when facing new technologies.

Suggested Citation

  • Xiangzhi Huang & Xuekai Cen & Ming Cai & Rui Zhou, 2022. "A Framework to Analyze Function Domains of Autonomous Transportation Systems Based on Text Analysis," Mathematics, MDPI, vol. 11(1), pages 1-19, December.
  • Handle: RePEc:gam:jmathe:v:11:y:2022:i:1:p:158-:d:1018067
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/1/158/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/1/158/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sunghwan Hwang & Eunhye Cho, 2021. "Exploring Latent Topics and Research Trends in Mathematics Teachers’ Knowledge Using Topic Modeling: A Systematic Review," Mathematics, MDPI, vol. 9(22), pages 1-19, November.
    2. Guo, Yue & Barnes, Stuart J. & Jia, Qiong, 2017. "Mining meaning from online ratings and reviews: Tourist satisfaction analysis using latent dirichlet allocation," Tourism Management, Elsevier, vol. 59(C), pages 467-483.
    3. Karime Montes Escobar & José Luis Vicente-Villardon & Javier de la Hoz-M & Lelly María Useche-Castro & Daniel Fabricio Alarcón Cano & Aline Siteneski, 2021. "Frequency of Neuroendocrine Tumor Studies: Using Latent Dirichlet Allocation and HJ-Biplot Statistical Methods," Mathematics, MDPI, vol. 9(18), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Binni & Wang, Pong & Tu, Yiliu, 2021. "Customer satisfaction service match and service quality-based blockchain cloud manufacturing," International Journal of Production Economics, Elsevier, vol. 240(C).
    2. M. Narciso, 2022. "The Unreliability of Online Review Mechanisms," Journal of Consumer Policy, Springer, vol. 45(3), pages 349-368, September.
    3. Jiacong Wu & Yu Wang & Ru Zhang & Jing Cai, 2018. "An Approach to Discovering Product/Service Improvement Priorities: Using Dynamic Importance-Performance Analysis," Sustainability, MDPI, vol. 10(10), pages 1-26, October.
    4. Shuyue Huang & Lena Jingen Liang & Hwansuk Chris Choi, 2022. "How We Failed in Context: A Text-Mining Approach to Understanding Hotel Service Failures," Sustainability, MDPI, vol. 14(5), pages 1-18, February.
    5. Carmela Iorio & Giuseppe Pandolfo & Antonio D’Ambrosio & Roberta Siciliano, 2020. "Mining big data in tourism," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(5), pages 1655-1669, December.
    6. Mohamed M. Mostafa, 2023. "A one-hundred-year structural topic modeling analysis of the knowledge structure of international management research," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3905-3935, August.
    7. Ian Sutherland & Kiattipoom Kiatkawsin, 2020. "Determinants of Guest Experience in Airbnb: A Topic Modeling Approach Using LDA," Sustainability, MDPI, vol. 12(8), pages 1-16, April.
    8. Boccali, Filippo & Mariani, Marcello M. & Visani, Franco & Mora-Cruz, Alexandra, 2022. "Innovative value-based price assessment in data-rich environments: Leveraging online review analytics through Data Envelopment Analysis to empower managers and entrepreneurs," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    9. Ahani, Ali & Nilashi, Mehrbakhsh & Yadegaridehkordi, Elaheh & Sanzogni, Louis & Tarik, A. Rashid & Knox, Kathy & Samad, Sarminah & Ibrahim, Othman, 2019. "Revealing customers’ satisfaction and preferences through online review analysis: The case of Canary Islands hotels," Journal of Retailing and Consumer Services, Elsevier, vol. 51(C), pages 331-343.
    10. Xue, Lan & Leung, Xi Y. & Ma, Shihan (David), 2022. "What makes a good “guest”: Evidence from Airbnb hosts' reviews," Annals of Tourism Research, Elsevier, vol. 95(C).
    11. Xiao-kang Wang & Sheng-hui Wang & Hong-yu Zhang & Jian-qiang Wang & Lin Li, 2021. "The Recommendation Method for Hotel Selection Under Traveller Preference Characteristics: A Cloud-Based Multi-Criteria Group Decision Support Model," Group Decision and Negotiation, Springer, vol. 30(6), pages 1433-1469, December.
    12. Liu, Yuqing & Schuberth, Florian & Liu, Yide & Henseler, Jörg, 2022. "Modeling and assessing forged concepts in tourism and hospitality using confirmatory composite analysis," Journal of Business Research, Elsevier, vol. 152(C), pages 221-230.
    13. Gang Ren & Taeho Hong, 2017. "Investigating Online Destination Images Using a Topic-Based Sentiment Analysis Approach," Sustainability, MDPI, vol. 9(10), pages 1-18, September.
    14. Yang Song & Jessica Fernandez & Tong Wang, 2020. "Understanding Perceived Site Qualities and Experiences of Urban Public Spaces: A Case Study of Social Media Reviews in Bryant Park, New York City," Sustainability, MDPI, vol. 12(19), pages 1-15, September.
    15. Wen-Kuo Chen & Dalianus Riantama & Long-Sheng Chen, 2020. "Using a Text Mining Approach to Hear Voices of Customers from Social Media toward the Fast-Food Restaurant Industry," Sustainability, MDPI, vol. 13(1), pages 1-17, December.
    16. Junegak Joung & Ki-Hun Kim & Kwangsoo Kim, 2021. "Data-Driven Approach to Dual Service Failure Monitoring From Negative Online Reviews: Managerial Perspective," SAGE Open, , vol. 11(1), pages 21582440209, January.
    17. Pengxia Zhang & Mingzheng Liu & Dandan Li & Yue Dong, 2021. "The Audience’s Perspective: Decline of Mythical Elements in Films," SAGE Open, , vol. 11(3), pages 21582440211, August.
    18. Lee, Carmen Kar Hang & Tse, Ying Kei & Leung, Eric Ka Ho & Wang, Yichuan, 2024. "Causal recipes of customer loyalty in a sharing economy: Integrating social media analytics and fsQCA," Journal of Business Research, Elsevier, vol. 181(C).
    19. Kumar, Avinash & Chakraborty, Shibashish & Bala, Pradip Kumar, 2023. "Text mining approach to explore determinants of grocery mobile app satisfaction using online customer reviews," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).
    20. Xiaoguang Wang & Tao Lv & Lei Fan, 2022. "New Energy Vehicle Consumer Demand Mining Research Based on Fusion Topic Model: A Case in China," Sustainability, MDPI, vol. 14(6), pages 1-13, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2022:i:1:p:158-:d:1018067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.