IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2022i1p158-d1018067.html
   My bibliography  Save this article

A Framework to Analyze Function Domains of Autonomous Transportation Systems Based on Text Analysis

Author

Listed:
  • Xiangzhi Huang

    (School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China)

  • Xuekai Cen

    (School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China)

  • Ming Cai

    (School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou 510275, China)

  • Rui Zhou

    (School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China)

Abstract

With the development of information and communication technologies, the current intelligent transportation systems (ITSs) will gradually become automated and connected, and can be treated as autonomous transportation systems (ATSs). Function, which unites cutting-edge technology with ATS services as a fundamental component of ATS operation, should be categorized into function domains to more clearly show how ATS operates. Existing ITS function domains are classified mostly based on the experience of experts or the needs of practitioners, using vague classification criteria. To ensure tractability, we aim to categorize ATS functions into function domains based on text analysis, minimizing the reliance on subjective experience. First, we introduce the Latent Dirichlet Allocation (LDA) topic model to extract text features of functions into distribution weights, reflecting the semantics of the text data. Second, based on the LDA model, we categorize ATS functions into twelve function domains by the k-means method. The comparison between the proposed function domains and the existing counterparts of other ITS framework demonstrates the effectiveness of the LDA-based classification method. This study provides a reference for text processing and function classification of ATS architecture. The proposed functions and function domains reveal the objectives in future transportation systems, which could guide urban planners or engineers to better design control strategies when facing new technologies.

Suggested Citation

  • Xiangzhi Huang & Xuekai Cen & Ming Cai & Rui Zhou, 2022. "A Framework to Analyze Function Domains of Autonomous Transportation Systems Based on Text Analysis," Mathematics, MDPI, vol. 11(1), pages 1-19, December.
  • Handle: RePEc:gam:jmathe:v:11:y:2022:i:1:p:158-:d:1018067
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/1/158/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/1/158/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sunghwan Hwang & Eunhye Cho, 2021. "Exploring Latent Topics and Research Trends in Mathematics Teachers’ Knowledge Using Topic Modeling: A Systematic Review," Mathematics, MDPI, vol. 9(22), pages 1-19, November.
    2. Guo, Yue & Barnes, Stuart J. & Jia, Qiong, 2017. "Mining meaning from online ratings and reviews: Tourist satisfaction analysis using latent dirichlet allocation," Tourism Management, Elsevier, vol. 59(C), pages 467-483.
    3. Karime Montes Escobar & José Luis Vicente-Villardon & Javier de la Hoz-M & Lelly María Useche-Castro & Daniel Fabricio Alarcón Cano & Aline Siteneski, 2021. "Frequency of Neuroendocrine Tumor Studies: Using Latent Dirichlet Allocation and HJ-Biplot Statistical Methods," Mathematics, MDPI, vol. 9(18), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Binni & Wang, Pong & Tu, Yiliu, 2021. "Customer satisfaction service match and service quality-based blockchain cloud manufacturing," International Journal of Production Economics, Elsevier, vol. 240(C).
    2. Yucheng Zhang & Zhiling Wang & Lin Xiao & Lijun Wang & Pei Huang, 2023. "Discovering the evolution of online reviews: A bibliometric review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-22, December.
    3. M. Narciso, 2022. "The Unreliability of Online Review Mechanisms," Journal of Consumer Policy, Springer, vol. 45(3), pages 349-368, September.
    4. Ian Sutherland & Youngseok Sim & Seul Ki Lee & Jaemun Byun & Kiattipoom Kiatkawsin, 2020. "Topic Modeling of Online Accommodation Reviews via Latent Dirichlet Allocation," Sustainability, MDPI, vol. 12(5), pages 1-15, February.
    5. Jiacong Wu & Yu Wang & Ru Zhang & Jing Cai, 2018. "An Approach to Discovering Product/Service Improvement Priorities: Using Dynamic Importance-Performance Analysis," Sustainability, MDPI, vol. 10(10), pages 1-26, October.
    6. Zuo, Wenming & Bai, Weijing & Zhu, Wenfeng & He, Xinming & Qiu, Xinxin, 2022. "Changes in service quality of sharing accommodation: Evidence from airbnb," Technology in Society, Elsevier, vol. 71(C).
    7. Tahereh Dehdarirad & Kalle Karlsson, 2021. "News media attention in Climate Action: latent topics and open access," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 8109-8128, September.
    8. Shuyue Huang & Lena Jingen Liang & Hwansuk Chris Choi, 2022. "How We Failed in Context: A Text-Mining Approach to Understanding Hotel Service Failures," Sustainability, MDPI, vol. 14(5), pages 1-18, February.
    9. Carmela Iorio & Giuseppe Pandolfo & Antonio D’Ambrosio & Roberta Siciliano, 2020. "Mining big data in tourism," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(5), pages 1655-1669, December.
    10. Mohamed M. Mostafa, 2023. "A one-hundred-year structural topic modeling analysis of the knowledge structure of international management research," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3905-3935, August.
    11. Ian Sutherland & Kiattipoom Kiatkawsin, 2020. "Determinants of Guest Experience in Airbnb: A Topic Modeling Approach Using LDA," Sustainability, MDPI, vol. 12(8), pages 1-16, April.
    12. Liu, Xiao & Li, Ming-Yang, 2024. "Sustainable service product design method: Focus on customer demands and triple bottom line," Journal of Retailing and Consumer Services, Elsevier, vol. 80(C).
    13. Sunyoung Hlee & Hanna Lee & Chulmo Koo, 2018. "Hospitality and Tourism Online Review Research: A Systematic Analysis and Heuristic-Systematic Model," Sustainability, MDPI, vol. 10(4), pages 1-27, April.
    14. Choi, Hyunhong & Woo, JongRoul, 2022. "Investigating emerging hydrogen technology topics and comparing national level technological focus: Patent analysis using a structural topic model," Applied Energy, Elsevier, vol. 313(C).
    15. Wenzhi Cao & Xingen Yang & Yi Yang, 2023. "A Large-Scale Reviews-Driven Multi-Criteria Product Ranking Approach Based on User Credibility and Division Mechanism," Mathematics, MDPI, vol. 11(13), pages 1-19, July.
    16. Nan Yang & Nikolaos Korfiatis & Dimitris Zissis & Konstantina Spanaki, 2024. "Incorporating topic membership in review rating prediction from unstructured data: a gradient boosting approach," Annals of Operations Research, Springer, vol. 339(1), pages 631-662, August.
    17. Boccali, Filippo & Mariani, Marcello M. & Visani, Franco & Mora-Cruz, Alexandra, 2022. "Innovative value-based price assessment in data-rich environments: Leveraging online review analytics through Data Envelopment Analysis to empower managers and entrepreneurs," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    18. Adjei Peter Darko & Decui Liang & Yinrunjie Zhang & Agbodah Kobina, 2023. "Service quality in football tourism: an evaluation model based on online reviews and data envelopment analysis with linguistic distribution assessments," Annals of Operations Research, Springer, vol. 325(1), pages 185-218, June.
    19. Ahani, Ali & Nilashi, Mehrbakhsh & Yadegaridehkordi, Elaheh & Sanzogni, Louis & Tarik, A. Rashid & Knox, Kathy & Samad, Sarminah & Ibrahim, Othman, 2019. "Revealing customers’ satisfaction and preferences through online review analysis: The case of Canary Islands hotels," Journal of Retailing and Consumer Services, Elsevier, vol. 51(C), pages 331-343.
    20. Lucini, Filipe R. & Tonetto, Leandro M. & Fogliatto, Flavio S. & Anzanello, Michel J., 2020. "Text mining approach to explore dimensions of airline customer satisfaction using online customer reviews," Journal of Air Transport Management, Elsevier, vol. 83(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2022:i:1:p:158-:d:1018067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.